【題目】如圖,在平面直角坐標(biāo)系中,已知四個定點(diǎn)、、、,點(diǎn)在四邊形內(nèi),則到四邊形四個頂點(diǎn)的距離的和最小時的點(diǎn)的坐標(biāo)為______.
【答案】(-,)
【解析】
設(shè)AC與BD交于P′點(diǎn),則由不等式的性質(zhì)可得,PA+PC≥AC=P′A+P′C,PB+PD≥BD=P′B+P′D,得出PA+PB+PC+PD≥AC+BD,所以當(dāng)P在P′處時PA+PB+PC+PD的值最小,再根據(jù)點(diǎn)P′為直線AC與BD的交點(diǎn)可求出此時點(diǎn)P′的坐標(biāo).
解:如圖,設(shè)AC與BD交于P′點(diǎn),則PA+PC≥AC=P′A+P′C,PB+PD≥BD=P′B+P′D,
因此,PA+PB+PC+PD≥AC+BD,當(dāng)動點(diǎn)P在P′的位置時,PA+PB+PC+PD的值最小,
設(shè)直線AC的解析式為y=kx+b,將點(diǎn)A(-3,0),C(0,3)代入得,
,解得,∴直線AC的解析式為y=x+3①,
同理根據(jù)點(diǎn)B(1,-1),D(-1,3)可得直線BD的解析式為y=-2x+1②,
聯(lián)立①②得,,解得.
∴此時點(diǎn)P的坐標(biāo)為:.
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),且與x軸的一個交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有兩個不相等的實(shí)數(shù)根.其中正確結(jié)論的是______________(只填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系中的點(diǎn)和(半徑為),給出如下定義:若點(diǎn)關(guān)于點(diǎn)的對稱點(diǎn)為,且,則稱點(diǎn)為的稱心點(diǎn).
(1)當(dāng)的半徑為2時,
①如圖1,在點(diǎn),,中,的稱心點(diǎn)是 ;
②如圖2,點(diǎn)在直線上,若點(diǎn)是的稱心點(diǎn),求點(diǎn)的橫坐標(biāo)的取值范圍;
(2)的圓心為,半徑為2,直線與軸,軸分別交于點(diǎn),.若線段上的所有點(diǎn)都是的稱心點(diǎn),直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,P是邊BC上的一動點(diǎn)(不與點(diǎn)B,C重合),點(diǎn)B關(guān)于直線AP的對稱點(diǎn)為E,連接AE,連接DE并延長交射線AP于點(diǎn)F,連接BF
(1)若,直接寫出的大小(用含的式子表示).
(2)求證:.
(3)連接CF,用等式表示線段AF,BF,CF之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)今“微信運(yùn)動”被越來越多的人關(guān)注和喜愛,某數(shù)學(xué)興趣小組隨機(jī)調(diào)查了我市名教師某日“微信運(yùn)動”中的步數(shù)情況進(jìn)行統(tǒng)計整理,繪制了如下的統(tǒng)計圖表(不完整):
步數(shù) | 頻數(shù) | 頻率 |
請根據(jù)以上信息,解答下列問題:
(1)寫出,,,的值并補(bǔ)全頻數(shù)分布直方圖;
(2)我市約有名教師,用調(diào)查的樣本數(shù)據(jù)估計日行走步數(shù)超過步(包含步)的教師有多少名?
(3)若在名被調(diào)查的教師中,選取日行走步數(shù)超過步(包含步)的兩名教師與大家分享心得,用樹形圖或列表法求被選取的兩名教師恰好都在步(包含步)以上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),拋物線的對稱軸與軸交于點(diǎn).
(1)請直接寫出、兩點(diǎn)的坐標(biāo)及的度數(shù);
(2)如圖1,若點(diǎn)為拋物線對稱軸上的點(diǎn),且,求點(diǎn)的坐標(biāo);
(3)如圖,若點(diǎn)、分別為線段和上的動點(diǎn),且,過、分別作軸的垂線,垂足分別為、.在、兩點(diǎn)的運(yùn)動過程中,試探究:
①是否是一個定值?如果是,請求出這個定值,如果不是,請說明理由;
②若將沿著翻折得到,將沿著翻折得到,當(dāng)點(diǎn)從點(diǎn)運(yùn)動到點(diǎn)的過程中,求點(diǎn)和點(diǎn)的運(yùn)動軌跡的長度之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了幫助市內(nèi)一名患“白血病”的中學(xué)生,東營市某學(xué)校數(shù)學(xué)社團(tuán)15名同學(xué)積極捐款,捐款情況如下表所示,下列說法正確的是( 。
捐款數(shù)額 | 10 | 20 | 30 | 50 | 100 |
人數(shù) | 2 | 4 | 5 | 3 | 1 |
A. 眾數(shù)是100 B. 中位數(shù)是30 C. 極差是20 D. 平均數(shù)是30
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】開展陽光體育運(yùn)動,掌握運(yùn)動技能,增強(qiáng)身體素質(zhì).某校初二年級五月開展了周末一小時興趣鍛煉活動,項目包括:籃球技能、排球技能、足球技能、立定跳遠(yuǎn)、50米跑,每個同學(xué)只選一項參與.王老師為了解學(xué)生對各種項目的參與情況,隨機(jī)調(diào)查了部分學(xué)生參與哪一類項目(被調(diào)查的學(xué)生沒有不參與的),并將調(diào)查結(jié)果制成了如下的兩個統(tǒng)計圖(不完整)請你根據(jù)圖中所提供的信息,完成下列問題:
(1)求本次調(diào)查的學(xué)生人數(shù);
(2)請將兩個統(tǒng)計圖補(bǔ)充完整,并求出足球項目在扇形統(tǒng)計圖中所占圓心角的度數(shù);
(3)若該中學(xué)初二年級有名學(xué)生,請估計該校初二學(xué)生參與球類項目的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,是坐標(biāo)原點(diǎn),拋物線交軸于兩點(diǎn)(如圖),頂點(diǎn)是,對稱軸交軸于點(diǎn)
(1)如圖(1)求拋物線的解析式;
(2)如圖(2)是第三象限拋物線上一點(diǎn),連接并延長交拋物線于點(diǎn),連接求證:;
(3)如圖(3)在(2)問條件下,分別是線段延長線上一點(diǎn),連接,過點(diǎn)作于交于點(diǎn),延長交于,若求點(diǎn)坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com