【題目】解不等式組 ,并把解集表示在數(shù)軸上.
【答案】解: ,由①得,x>2,由②得,x≤4,
故此不等式組的解集為:2<x≤4.
在數(shù)軸上表示為:
【解析】由①得,x>2,由②得,x≤4,然后根據(jù)大小小大中間找得出不等式組的解集,最后把解集在數(shù)軸上表示出來,注意實(shí)心點(diǎn)和空心點(diǎn)的正確使用。
【考點(diǎn)精析】掌握不等式的解集在數(shù)軸上的表示和一元一次不等式組的解法是解答本題的根本,需要知道不等式的解集可以在數(shù)軸上表示,分三步進(jìn)行:①畫數(shù)軸②定界點(diǎn)③定方向.規(guī)律:用數(shù)軸表示不等式的解集,應(yīng)記住下面的規(guī)律:大于向右畫,小于向左畫,等于用實(shí)心圓點(diǎn),不等于用空心圓圈;解法:①分別求出這個不等式組中各個不等式的解集;②利用數(shù)軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 ).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某倉庫有甲、乙、丙三輛運(yùn)貨車,每輛車只負(fù)責(zé)進(jìn)貨或出貨,其中丙車每小時的運(yùn)輸量最多,乙車每小時的運(yùn)輸量最少,且乙車每小時的運(yùn)輸量為6噸.如圖是從早晨上班開始庫存量y(噸)與時間x(小時)的函數(shù)圖像,OA段只有甲、丙車工作,AB段只有乙、丙車工作,BC段只有甲、乙車工作.
(1)你能確定甲、乙、丙三輛車哪輛是出貨車嗎?并說明理由.
(2)若甲、乙、丙三輛車一起工作,一天工作8小時,則倉庫的庫存量增加多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,∠BAC=90°,AB=AC.
(1)如圖,D為AC上任一點(diǎn),連接BD,過A點(diǎn)作BD的垂線交過C點(diǎn)與AB平行的直線CE于點(diǎn)E.求證:BD=AE.
(2)若點(diǎn)D在AC的延長線上,如圖,其他條件同(1),請畫出此時的圖形,并猜想BD與AE是否仍然相等?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知BC=5,AB=1,AB⊥BC,射線CM⊥BC,動點(diǎn)P在線段BC上(不與點(diǎn)B,C重合),過點(diǎn)P作DP⊥AP交射線CM于點(diǎn)D,連接AD.
(1)如圖1,若BP=4,判斷△ADP的形狀,并加以證明.
(2)如圖2,若BP=1,作點(diǎn)C關(guān)于直線DP的對稱點(diǎn)C′,連接AC′.
①依題意補(bǔ)全圖2;
②請直接寫出線段AC′的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△ABC的邊長為3,點(diǎn)E在AC上,點(diǎn)F在BC上,且AE=CF=1,則APAF的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,∠ABC=30°,BC=8,sin∠A= ,BD是AC邊上的中線.求:
(1)△ABC的面積;
(2)∠ABD的余切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一個長為、寬為的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成一個“回形”正方形(如圖2)
(1)觀察圖2請你寫出、、之間的等量關(guān)系是______;
(2)根據(jù)(1)中的結(jié)論,若,,則______;
(3)拓展應(yīng)用:若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由九個等邊三角形組成的一個六邊形,當(dāng)最小的等邊三角形邊長為2 cm時,這個六邊形的周長為
A. 30cm B. 40cm C. 50cm D. 60cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】推理填空:
如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),且∠1=∠4( )
∴∠2=∠4 (等量代換)
∴CE∥BF ( )
∴∠ =∠3( )
又∵∠B=∠C(已知),∴∠3=∠B(等量代換)
∴AB∥CD ( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com