【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊三角形ACD及等邊三角形ABE.已知∠BAC = 30,EF⊥AB于點(diǎn) F,連接 DF.
(1)求證:AC=EF;
(2)求證:四邊形 ADFE是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(8分). 目前節(jié)能燈在各城市已基本普及,今年某市面向縣級(jí)及農(nóng)村地區(qū)推廣,為響應(yīng)號(hào)召,朝陽(yáng)燈飾商場(chǎng)用了4200元購(gòu)進(jìn)甲型和乙型兩種節(jié)能燈.這兩種型號(hào)節(jié)能燈的進(jìn)價(jià)、售價(jià)如表:
進(jìn)價(jià)(元/只) | 售價(jià)(元/只) | |
甲型 | 25 | 30 |
乙型 | 45 | 60 |
特別說(shuō)明:毛利潤(rùn)=售價(jià)﹣進(jìn)價(jià)
(1)朝陽(yáng)燈飾商場(chǎng)銷售甲型節(jié)能燈一只毛利潤(rùn)是 元;
(2)朝陽(yáng)燈飾商場(chǎng)購(gòu)買甲,乙兩種節(jié)能燈共100只,其中買了甲型節(jié)能燈多少只?
(3)現(xiàn)在朝陽(yáng)燈飾商場(chǎng)購(gòu)進(jìn)甲型節(jié)能燈m只,銷售完節(jié)能燈時(shí)所獲的毛利潤(rùn)為1080元.求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)動(dòng)屬于平移的是( 。
A.蕩秋千
B.地球繞著太陽(yáng)轉(zhuǎn)
C.風(fēng)箏在空中隨風(fēng)飄動(dòng)
D.急剎車時(shí),汽車在地面上的滑動(dòng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)初三年級(jí)的學(xué)生開展測(cè)量物體高度的實(shí)踐活動(dòng),他們要測(cè)量一幢建筑物AB的高度.如圖,他們先在點(diǎn)C處測(cè)得建筑物AB的頂點(diǎn)A的仰角為30°,然后向建筑物AB前進(jìn)10m到達(dá)點(diǎn)D處,又測(cè)得點(diǎn)A的仰角為60°,那么建筑物AB的高度是________ m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CD是經(jīng)過(guò)∠BCA頂點(diǎn)C的一條直線,CA=CB.E、F分別是直線CD上兩點(diǎn),且∠BEC=∠CFA=∠α.
(1)若直線CD經(jīng)過(guò)∠BCA的內(nèi)部,且E,F(xiàn)在射線CD上.
①如圖1,若∠BCA=90°,∠α=90°,則BE CF;
②如圖2,若0°<∠BCA<180°,請(qǐng)?zhí)砑右粋(gè)關(guān)于∠α與∠BCA關(guān)系的條件 ,使①中的結(jié)論仍然成立,并說(shuō)明理由;
(2)如圖3,若直線CD經(jīng)過(guò)∠BCA的外部,∠α=∠BCA,請(qǐng)?zhí)岢鲫P(guān)于EF,BE,AF三條線段數(shù)量關(guān)系的合理猜想: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先化簡(jiǎn),再求值:
(1)(x+2)2-(x+5)(x-5),其中x=。
(2)[(x+2y)2-(x+y)(3x-y)-5y2]÷2x,其中x=-2,y=。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1是一個(gè)長(zhǎng)為2m、寬為2n的長(zhǎng)方形,沿圖中虛線用剪刀均分成四塊小長(zhǎng)方形,然后按圖2的形狀拼成一個(gè)正方形。
(1)你認(rèn)為圖2中的陰影部分的正方形的邊長(zhǎng)等于多少?
(2)請(qǐng)用兩種不同的方法求圖2中陰影部分的面積:
方法1: ;
方法2: ;
(3)觀察圖2你能寫出下列三個(gè)代數(shù)式之間的等量關(guān)系嗎?
代數(shù)式:(m+n)2,(m-n)2,mn. ;
(4)根據(jù)(3)題中的等量關(guān)系,解決如下問(wèn)題:
若a+b=7,ab=5,則(a-b)2== 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A. 若a2>b2,則a>bB. 若a>b,則c-a>c-b
C. 若ab<0,a<0,則b<0D. 若a<0,b>a,則ab<a2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com