【題目】我國(guó)漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”,后人稱(chēng)其為“趙爽弦圖”,它是用八個(gè)全等的直角三角形拼接而成,記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3.若S1+S2+S315,則S2的值是_____

【答案】5

【解析】

將正方形MNKT的面積設(shè)為x,將其余八個(gè)全等的三角形面積一個(gè)設(shè)為y,

∵正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,S1+S2+S3=15,

可得:S1=8y+x,S2=4y+x,S3=x,進(jìn)而可得S1+S2+S3=3x+12y=15,解得3x+12y=10,x+4y==5,

因此S2=x+4y=.

將正方形MNKT的面積設(shè)為x,將其余八個(gè)全等的三角形面積一個(gè)設(shè)為y,

∵正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,S1+S2+S3=15,

∴得出S1=8y+x,S2=4y+x,S3=x,

S1+S2+S3=3x+12y=15,

3x+12y=10,x+4y=,

所以S2=x+4y=.

故答案為:5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一個(gè)直角三角形紙片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分別是AC、AB邊上點(diǎn),連接EF.

(1)圖①,若將紙片ACB的一角沿EF折疊,折疊后點(diǎn)A落在AB邊上的點(diǎn)D處,且使S四邊形ECBF=3SEDF , 求AE的長(zhǎng);
(2)如圖②,若將紙片ACB的一角沿EF折疊,折疊后點(diǎn)A落在BC邊上的點(diǎn)M處,且使MF∥CA.
①試判斷四邊形AEMF的形狀,并證明你的結(jié)論;
②求EF的長(zhǎng);
(3)如圖③,若FE的延長(zhǎng)線與BC的延長(zhǎng)線交于點(diǎn)N,CN=1,CE= ,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC中,∠A=30°,∠B=60°。

(1)作∠B的平分線BD,交AC于點(diǎn)D;作AB的中點(diǎn)E(要求:尺規(guī)作圖,保留作圖痕跡)

(2)連接DE,求證:△ADE≌△BDE。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖信息,L1為走私船,L2為我公安快艇,航行時(shí)路程與時(shí)間的函數(shù)圖象,問(wèn)

(1)在剛出發(fā)時(shí)我公安快艇距走私船多少海里?

(2)計(jì)算走私船與公安快艇的速度分別是多少?

(3)寫(xiě)出L1,L2的解析式

(4)問(wèn)6分鐘時(shí)兩艇相距幾海里.

(5)猜想,公安快艇能否追上走私船,若能追上,那么在幾分鐘追上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,黑甲殼蟲(chóng)從點(diǎn)A出發(fā),白甲殼蟲(chóng)從點(diǎn)C1出發(fā),它們以相同的速度分別沿棱向前爬行.黑甲殼蟲(chóng)爬行的路線是:AA1→A1D1→D1C1→C1C→CB→BA→AA1→A1D1…,白甲殼蟲(chóng)爬行的路線是:C1C→CB→BB1→B1C1→C1C→CB…,那么當(dāng)黑、白兩個(gè)甲殼蟲(chóng)各爬行完第2018條棱分別停止在所到的正方體頂點(diǎn)處時(shí),它們之間的最短路程的平方是(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】化簡(jiǎn)下列各式:
(1)4(a+b)2﹣2(a+b)(2a﹣2b)
(2)( ﹣m+1)÷

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c分別交x軸于A(4,0)、B(﹣1,0),交y軸于點(diǎn)C(0,﹣3),過(guò)點(diǎn)A的直線y=﹣ x+3交拋物線于另一點(diǎn)D.

(1)求拋物線的解析式及點(diǎn)D的坐標(biāo);
(2)若點(diǎn)P位x軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)Q在線段AC上,且Q到x軸的距離為 ,連接PC、PQ,當(dāng)△PCQ的周長(zhǎng)最小時(shí),求出點(diǎn)P的坐標(biāo);
(3)如圖2,在(2)的結(jié)論下,連接PD,在平面內(nèi)是否存在△A1P1D1 , 使△A1P1D1≌△APD(點(diǎn)A1、P1、D1的對(duì)應(yīng)點(diǎn)分別是A、P、D,A1P1平行于y軸,點(diǎn)P1在點(diǎn)A1上方),且△A1P1D1的兩個(gè)頂點(diǎn)恰好落在拋物線上?若存在,請(qǐng)求出點(diǎn)A1的橫坐標(biāo)m,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為6,E為BC上的一點(diǎn),BE=2,F(xiàn)為AB上的一點(diǎn),AF=3,P為AC上一點(diǎn),則PF+PE的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中畫(huà)出直線y=x+1的圖象,并根據(jù)圖象回答下列問(wèn)題:

(1)寫(xiě)出直線與x軸、y軸的交點(diǎn)坐標(biāo);

(2)求出直線與坐標(biāo)軸圍成的三角形的面積;

(3)若直線y=kx+b與直線y=x+1關(guān)于y軸對(duì)稱(chēng),求k,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案