在一次課外實(shí)踐活動(dòng)中,同學(xué)們要測(cè)湘江河的寬度.如圖1所示,小明先在河西選定建筑物A,并在河?xùn)|岸的B處觀察,此時(shí)視線(xiàn)BA在河岸BE所成的夾角∠ABE=32°,小明沿河岸BE走了400米到C處,再觀察A,此時(shí)視線(xiàn)CA與河岸所成的夾角∠ACE=64°.
(1)請(qǐng)你根據(jù)以上數(shù)據(jù),幫助小明計(jì)算出湘江河的寬度(結(jié)果精確到0.1米).
(2)求出湘江河寬后,小明突發(fā)奇想,欲求B的正對(duì)岸建筑物的高度MN(如圖2所示),現(xiàn)測(cè)得小明的眼睛與地面的距離(FB)是1.6m,看建筑物頂部M的仰角(∠MFG)是8°,BN為湘江河寬,求建筑物的高度MN(結(jié)果精確到0.1米).
(提示:河的兩岸互相平行;參考數(shù)值:sin32°≈0.530;cos32°≈0.848;
tan32°≈0.625;sin64°≈0.900;cos64°≈0.438;tan64°≈2.050;
sin8°≈0.139;cos8°≈0.990;tan8°≈0.141)

解:(1)如圖,過(guò)A作AD⊥BC于D,
∴AD就是湘江河的寬度,
在Rt△ABD中,∠ABE=32°,
∴BD=
在Rt△ACD中,∠ACD=64°,
CD=
而B(niǎo)D-CD=BC,
-=400,
∴AD≈359.6米;

(2)由(1)得BN=AD=359.6米,
依題意得FG=NB,F(xiàn)B=NG,
在Rt△MFG中,GM=FG•tan∠MFG=FG•tan8°=50.70米,
∴MN=MG+NG=50.70+1.6≈52.3米.
∴建筑物的高度MN為52.3米.
分析:(1)如圖,過(guò)A作AD⊥BC于D,在Rt△ABD中,可以用AD根據(jù)三角函數(shù)表示線(xiàn)段BD的長(zhǎng)度,然后同樣的方法在R
t△ACD中用AD表示線(xiàn)段CD的長(zhǎng)度,而B(niǎo)C=400,由此即可得到關(guān)于AD的方程,解方程即可求解;
(2)根據(jù)(1)知道線(xiàn)段BN的長(zhǎng)度,同時(shí)利用已知條件可以知道FC的長(zhǎng)度,然后在Rt△MFG中利用三角函數(shù)和已知條件可以求出CM的長(zhǎng)度,然后加上線(xiàn)段FB的長(zhǎng)度即可求出建筑物的高度MN;
點(diǎn)評(píng):此題主要考查了視角及其解直角三角形的應(yīng)用,解題時(shí)首先正確理解視角的定義,然后利用三角函數(shù)和已知條件即可解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在一次課外實(shí)踐活動(dòng)中,同學(xué)們要測(cè)量某公園人工湖兩側(cè)A,B兩個(gè)涼亭之間的距離.現(xiàn)測(cè)得AC=30m,BC=70m,∠CAB=120°,請(qǐng)計(jì)算A,B兩個(gè)涼亭之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在一次課外實(shí)踐活動(dòng)中,有兩個(gè)課題學(xué)習(xí)小組分別用測(cè)傾器、皮尺測(cè)量旗桿和小山的高度,他們分別設(shè)計(jì)了如下方案:
第一組,測(cè)量旗桿(圖-):①在測(cè)點(diǎn)A處安置測(cè)傾器,測(cè)得旗桿頂部M的仰角∠MCE=α;②量出測(cè)點(diǎn)A到旗桿底部N的水平距離AN=m;量出測(cè)傾器的高度AC=h.
第二組,測(cè)量某小山的高度(圖二),他們測(cè)量時(shí)所填寫(xiě)的表格如下:
題目   測(cè)量小山的高度
 

測(cè)量數(shù)據(jù)
 測(cè)量項(xiàng)目 測(cè)傾器高度 
 仰角α 20°30′       1.2米
 仰角β  30°    小山高度
 AB的距離           
(1)請(qǐng)你求出旗桿的高度(用已知的字母表示);
(2)第二小組記錄的同學(xué)不小心將AB的距離弄模糊了,請(qǐng)你填上一個(gè)較合理的數(shù)據(jù),并由此求出小山PH的高度(結(jié)果精確到個(gè)位).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在一次課外實(shí)踐活動(dòng)中,同學(xué)們要測(cè)湘江河的寬度.如圖1所示,小明先在河西選定建筑物A,并在河?xùn)|岸的B處觀察,此時(shí)視線(xiàn)BA在河岸BE所成的夾角∠ABE=32°,小明沿河岸BE走了400精英家教網(wǎng)米到C處,再觀察A,此時(shí)視線(xiàn)CA與河岸所成的夾角∠ACE=64°.
(1)請(qǐng)你根據(jù)以上數(shù)據(jù),幫助小明計(jì)算出湘江河的寬度(結(jié)果精確到0.1米).
(2)求出湘江河寬后,小明突發(fā)奇想,欲求B的正對(duì)岸建筑物的高度MN(如圖2所示),現(xiàn)測(cè)得小明的眼睛與地面的距離(FB)是1.6m,看建筑物頂部M的仰角(∠MFG)是8°,BN為湘江河寬,求建筑物的高度MN(結(jié)果精確到0.1米).
(提示:河的兩岸互相平行;參考數(shù)值:sin32°≈0.530;cos32°≈0.848;
tan32°≈0.625;sin64°≈0.900;cos64°≈0.438;tan64°≈2.050;
sin8°≈0.139;cos8°≈0.990;tan8°≈0.141)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在一次課外實(shí)踐活動(dòng)中,同學(xué)們要知道校園內(nèi)A,B兩處的距離,但無(wú)法直接測(cè)得.已知校園內(nèi)A、B、C三點(diǎn)形成的三角形如圖所示,現(xiàn)測(cè)得AC=6m,BC=14m,∠CAB=120°,請(qǐng)計(jì)算A,B兩處之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在一次課外實(shí)踐活動(dòng)中,同學(xué)們要知道校園內(nèi)A、B兩處的距離,但無(wú)法直接測(cè)得.已知校園內(nèi)A、B、C三點(diǎn)形成的三角形如圖所示,現(xiàn)測(cè)得AC=6m,BC=14m,∠CAB=60°,請(qǐng)計(jì)算A、B兩處之間的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案