【題目】如圖,為的直徑,為上一點(diǎn),連接,過作于點(diǎn),過點(diǎn)作,其中交的延長(zhǎng)線于點(diǎn).
(1)求證:是的切線.
(2)如圖,點(diǎn)在上,且滿足,連接并延長(zhǎng)交的延長(zhǎng)線于點(diǎn).
①試探究線段與之間滿足的數(shù)量關(guān)系.
②若,,求線段的長(zhǎng).
【答案】(1)見解析;(2)①線段與之間滿足的數(shù)量關(guān)系是:,理由見解析;②.
【解析】
(1)連接,由半徑相等可得,由垂直的定義可得,繼而結(jié)合已知可得,問題得證;
(2)①線段與之間滿足的數(shù)量關(guān)系是:,理由如下:如圖,過作于點(diǎn),則有,進(jìn)而通過證明,則可得,繼而可得;
②在Rt△BCD中,利用勾股定理求出BC的長(zhǎng),再由已知可得CF的長(zhǎng),設(shè),則,在中,利用勾股定理可求出OB的長(zhǎng),進(jìn)而證明,根據(jù)相似三角形的性質(zhì)即可求得答案.
(1)連接,
∵,
∴,
∵,
∴,
∵,
∴,即,
∴是的切線.
(2)①線段與之間滿足的數(shù)量關(guān)系是:,理由如下:
如圖,過作于點(diǎn),
∵OH過圓心O,
∴,
∵,∠ABC=∠OCB,
∴∠OCH+∠BCE=∠FCE-∠OCB=∠OCB,
又∵∠OCB=∠OCD+∠BCD,,
∴,
∵為公共邊,∠OHC=∠ODC=90°,
∴(),
∴,
∴;
②在Rt△BCD中,∠BDC=90°,BD=2,CD=4,
∴,
由①得:,
設(shè),則,
在中,,
∴,
解得:,即,
∵,
∴
∵,,
∴,
∵四邊形為的內(nèi)接四邊形,
∴
∴,
∴,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,某同學(xué)家的一面窗戶上安裝有遮陽(yáng)篷,圖2和圖3是截面示意圖,CD是遮陽(yáng)篷,窗戶AB為1.5米,BC為0.5米.該遮陽(yáng)篷有伸縮功能.如圖2,該同學(xué)在夏季某日的正午時(shí)刻測(cè)得太陽(yáng)光和水平線的夾角為60°,遮陽(yáng)篷CD正好將進(jìn)入窗戶AB的陽(yáng)光擋;如圖3,該同學(xué)在冬季某日的正午時(shí)刻測(cè)得太陽(yáng)光和水平線的夾角為30°,將遮陽(yáng)篷收縮成CD′時(shí),遮陽(yáng)篷正好完全不擋進(jìn)入窗戶AB的陽(yáng)光.
(1)計(jì)算圖3中CD′的長(zhǎng)度比圖2中CD的長(zhǎng)度收縮了多少米;(結(jié)果保留根號(hào))
(2)如果圖3中遮陽(yáng)篷的長(zhǎng)度為圖2中CD的長(zhǎng)度,請(qǐng)計(jì)算該遮陽(yáng)篷落在窗戶AB上的陰影長(zhǎng)度為多少米?(請(qǐng)?jiān)趫D3中畫圖并標(biāo)出相應(yīng)字母,然后再計(jì)算)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)為的網(wǎng)格中,的頂點(diǎn)均在格點(diǎn)上,點(diǎn)在上,且點(diǎn)也在格點(diǎn)上.
(Ⅰ)的值為_____________;
(Ⅱ)是以點(diǎn)為圓心,為半徑的一段圓弧.在如圖所示的網(wǎng)格中,將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,旋轉(zhuǎn)角為,連接,,當(dāng)的值最小時(shí),請(qǐng)用無刻度的直尺畫出點(diǎn),并簡(jiǎn)要說明點(diǎn)的位置是如何找到的(不要求證明)______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P和⊙C,給出如下定義:若⊙C上存在兩個(gè)點(diǎn)A、B,使得點(diǎn)P在射線BC上,且∠APB∠ACB(0°<∠ACB<180°),則稱P為⊙C的依附點(diǎn).
(1)當(dāng)⊙O的半徑為1時(shí),
①已知點(diǎn)D(﹣1,0),E(0,﹣2),F(2.5,0),在點(diǎn)D、E、F中,⊙O的依附點(diǎn)是 ;
②點(diǎn)T在直線y=﹣x上,若T為⊙O的依附點(diǎn),求點(diǎn)T的橫坐標(biāo)t的取值范圍;
(2)⊙C的圓心在x軸上,半徑為2,直線y=﹣x+2與x軸、y軸分別交于點(diǎn)M、N,若線段MN上的所有點(diǎn)都是⊙C的依附點(diǎn),直接寫出圓心C的橫坐標(biāo)m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖,已知拋物線y=ax2﹣3x+c與y軸交于點(diǎn)A(0,﹣4),與x軸交于點(diǎn)B(4,0),點(diǎn)P是線段AB下方拋物線上的一個(gè)動(dòng)點(diǎn).
(1)求這條拋物線的表達(dá)式及其頂點(diǎn)的坐標(biāo);
(2)當(dāng)點(diǎn)P移動(dòng)到拋物線的什么位置時(shí),∠PAB=90°求出此時(shí)點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P從點(diǎn)A出發(fā),沿線段AB下方的拋物線向終點(diǎn)B移動(dòng),在移動(dòng)中,設(shè)點(diǎn)P的橫坐標(biāo)為t,△PAB的面積為S,求S關(guān)于t的函數(shù)表達(dá)式,并求t為何值時(shí)S有最大值,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】取一張矩形紙片進(jìn)行折疊,具體操作過程如下:第一步:先把矩形ABCD對(duì)折,折痕為MN,如圖1;第二步:再把B點(diǎn)疊在折痕線MN上,折痕為AE,點(diǎn)B在MN上的對(duì)應(yīng)點(diǎn)為B',得Rt△AB'E,如圖2;第三步:沿EB'線折疊得折痕EF,使A點(diǎn)落在EC的延長(zhǎng)線上,如圖3.
利用展開圖4探究:
(1)△AEF是什么三角形?證明你的結(jié)論;
(2)對(duì)于任一矩形,按照上述方法是否都能折出這種三角形?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以正方形ABCD的AB邊為直徑作半圓O,過點(diǎn)C作直線切半圓于點(diǎn)E,交AD邊于點(diǎn)F,則=( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】橫、縱坐標(biāo)均為整數(shù)的點(diǎn)稱為格點(diǎn),如圖,的三個(gè)頂點(diǎn),,均為格點(diǎn),上的點(diǎn)也為格點(diǎn),用無刻度的直尺作圖:
(1)將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°,得到線段,寫出格點(diǎn)的坐標(biāo);
(2)將線段平移至線段,使點(diǎn)與點(diǎn)重合,直接寫出格點(diǎn)的坐標(biāo);
(3)畫出線段關(guān)于對(duì)稱的線段,保留作圖痕跡.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】陜西省相關(guān)文件規(guī)定,西安市實(shí)行居民階梯水價(jià)制度,對(duì)居民用水的基本水價(jià)實(shí)行三級(jí)價(jià)差,各階梯水價(jià)均為用戶終端水價(jià),具體如下:
第一階梯:年用水量及以下,終端水價(jià)為元/.
第二階梯:年用水量(含),終端水價(jià)為元/.
第三階梯:年用水量以上,終端水價(jià)為元/.
城區(qū)居民階梯水價(jià)計(jì)量結(jié)算周期以年為單位,年用水量累計(jì)達(dá)到各階梯水量上限后,超出部分執(zhí)行下一階梯水價(jià);年度周期之間水量不結(jié)轉(zhuǎn),不累計(jì).
設(shè)某戶居民2019年的年用水量為,應(yīng)繳水費(fèi)為(元).
(1)寫出該戶居民2019年的年用水量為含)的與之間的函數(shù)表達(dá)式.
(2)若該戶居民2019年的應(yīng)繳水費(fèi)為元,則該戶居民2019年的年用水量為多少.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com