如圖1,已知直線與y軸交于點A,拋物線經(jīng)過點A,其頂點為B,另一拋物線的頂點為D,兩拋物線相交于點C

(1)求點B的坐標,并說明點D在直線的理由;
(2)設(shè)交點C的橫坐標為m
①交點C的縱坐標可以表示為:        或        ,由此請進一步探究m關(guān)于h的函數(shù)關(guān)系式;
②如圖2,若,求m的值.
(1)B(1,1),詳見解析;(2)①(m-1)2+1或(m-h)2-h+2,;②

試題分析:(1)首先求得點A的坐標,然后求得點B的坐標,用h表示出點D的坐標后代入直線的解析式驗證即可;(2)根據(jù)兩種不同的表示形式得到m和h之間的函數(shù)關(guān)系即可;過點C作y軸的垂線,垂足為E,過點D作DF⊥CE于點F,證得△ACE∽△CDF,然后用m表示出點C和點D的坐標,根據(jù)相似三角形的性質(zhì)求得m的值即可.
試題解析:(1)當x=0時候,y=-x+2=2,
∴A(0,2),
把A(0,2)代入,得1+k=2
∴k=1,
∴y=(x-1)2+1,
∴B(1,1)
∵D(h,2-h)
∴當x=h時,y=-x+2=-h+2=2-h
∴點D在直線l上;
(2)①(m-1)2+1或(m-h)2-h+2
由題意得(m-1)2+1=(m-h)2-h+2,
整理得2mh-2m=h2-h
∵h>1

②過點C作y軸的垂線,垂足為E,過點D作DF⊥CE于點F

∵∠ACD=90°,
∴∠ACE=∠CDF
又∵∠AEC=∠DFC
∴△ACE∽△CDF

又∵C(m,m2-2m+2),D(2m,2-2m),
∴AE=m2-2m,DF=m2,CE=CF=m

,解得
∵h>1

.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c經(jīng)過(-1,0),(0,-3),(2,-3)三點,求這條拋物線的解析式,并指出對稱軸和頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

許多橋梁都采用拋物線型設(shè)計,小明將他家鄉(xiāng)的彩虹橋按比例縮小后,繪成如下的示意圖,圖中的三條拋物線分別表示橋上的三條鋼梁,x軸表示橋面,y軸經(jīng)過中間拋物線的最高點,左右兩條拋物線關(guān)于y軸對稱.經(jīng)過測算,中間拋物線的解析式為:y=-x2+10,并且BD=CD.

(1)求鋼梁最高點離橋面的高度OE的長;
(2)求橋上三條鋼梁的總跨度AB的長;
(3)若拉桿DE∥拉桿BN,求右側(cè)拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

將拋物線y=(x﹣1)2+3向左平移1個單位,再向下平移3個單位后所得拋物線的解析式為(  )
A.y=(x﹣2)2B.y=(x﹣2)2+6C.y=x2+6D.y=x2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某工廠生產(chǎn)某品牌的護眼燈,并將護眼燈按質(zhì)量分成15個等級(等級越高,質(zhì)量越好.如:二級產(chǎn)品好于一級產(chǎn)品).若出售這批護眼燈,一級產(chǎn)品每臺可獲利21元,每提高一個等級每臺可多獲利潤1元,工廠每天只能生產(chǎn)同一個等級的護眼燈,每個等級每天生產(chǎn)的臺數(shù)如下表表示:
等級(x級)
一級
二級
三級

生產(chǎn)量(y臺/天)
78
76
74

(1)已知護眼燈每天的生產(chǎn)量y(臺)是等級x(級)的一次函數(shù),請直接寫出與之間的函數(shù)關(guān)系式:_____;
(2)每臺護眼燈可獲利z(元)關(guān)于等級x(級)的函數(shù)關(guān)系式:______;
(3)若工廠將當日所生產(chǎn)的護眼燈全部售出,工廠應生產(chǎn)哪一等級的護眼燈,才能獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

將拋物線y=x2+1先向左平移2個單位,再向下平移3個單位,那么所得拋物線的函數(shù)關(guān)系式是(  )
A.y=(x+2)2+2B.y=(x+2)2-2
C.y=(x-2)2+2D.y=(x-2)2-2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,一次函數(shù)與二次函數(shù)的圖象相交于A(,5)、B(9,2)兩點,則關(guān)于的不等式的解集為(    )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,其對稱軸為x=1,則正確的結(jié)論是( 。
A.a(chǎn)bc>0B.3a +c<0C.4a+2b+c<0D.b2 -4ac<0

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若A(),B(),C()為二次函數(shù)y=x²+4x-5 的圖象上的三點,則的大小關(guān)系是(     ) 
A.B.C. D.

查看答案和解析>>

同步練習冊答案