精英家教網 > 初中數學 > 題目詳情
如圖,已知CD是△ABC中AB邊上的高,以CD為直徑的⊙O分別交CA,CB于點E,F(xiàn),點G是AD的中點.求證:GE是⊙O的切線.

【答案】分析:要證GE是⊙O的切線,只要證明∠OEG=90°即可.
解答:證明:(證法一)連接OE,DE,
∵CD是⊙O的直徑,
∴∠AED=∠CED=90°,
∵G是AD的中點,
∴EG=AD=DG,
∴∠1=∠2;
∵OE=OD,
∴∠3=∠4,
∴∠1+∠3=∠2+∠4,
∴∠OEG=∠ODG=90°,
故GE是⊙O的切線;

(證法二)連接OE,OG,
∵AG=GD,CO=OD,
∴OG∥AC,
∴∠1=∠2,∠3=∠4.
∵OC=OE,
∴∠2=∠4,
∴∠1=∠3.
又OE=OD,OG=OG,
∴△OEG≌△ODG,
∴∠OEG=∠ODG=90°,
∴GE是⊙O的切線.
點評:本題考查切線的判定方法及圓周角定理運用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,已知CD是⊙O的直徑,過點D的弦DE平行于半徑OA,若∠D的度數是50°,則∠C的度數是(  )
A、25°B、30°C、40°D、50°

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知CD是△ABC中AB邊上的高,以CD為直徑的⊙O交CA于點E,點G是AD的中點.
(1)求證:GE是⊙O的切線;
(2)若AC⊥BC,且AC=8,BC=6,求切線GE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知CD是⊙O的直徑,弦DE∥半徑OA,∠D=50°,∠C=( 。
A、50°B、40°C、25°D、20°

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知CD是Rt△ABC的斜邊上的高,其中AD=9cm,BD=4cm,那么CD等于
 
cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•蒼梧縣二模)如圖,已知CD是⊙O的直徑,AC⊥CD,垂足為C,弦DE∥OA,直線AE,CD相交于點B.
(1)求證:直線AB是⊙O的切線;
(2)如果AC=1,BE=2,求
OCAC
的值.

查看答案和解析>>

同步練習冊答案