【題目】新園小區(qū)計(jì)劃在一塊長(zhǎng)為20米,寬12米的矩形場(chǎng)地上修建三條互相垂直的長(zhǎng)方形甬路(一條橫向、兩條縱向,且橫向、縱向的寬度比為3:2),其余部分種花草.若要使種花草的面積達(dá)到1442.則橫向的甬路寬為_____米.

【答案】3

【解析】

設(shè)橫向的甬路寬為3x則縱向的甬路寬為2x,由剩余部分的面積為1442,即可得出關(guān)于x的一元二次方程解之取其較小值即可得出結(jié)論

設(shè)橫向的甬路寬為3x,則縱向的甬路寬為2x,根據(jù)題意得

202×2x)(123x)=144

整理得x29x+8=0,解得x1=1,x2=8

∵當(dāng)x=8時(shí)123x=﹣12,x=8不合題意,舍去,∴x=1,3x=3

故答案為:3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲.乙兩同學(xué)騎自行車(chē)從A地沿同一條路到B,已知乙比甲先出發(fā)他們離出發(fā)地的距離Skm)和騎行時(shí)間th)之間的函數(shù)關(guān)系如圖1所示,給出下列說(shuō)法:①他們都騎行了20km;②乙在途中停留了0.5h;③甲.乙兩人同時(shí)到達(dá)目的地;④相遇后,甲的速度小于乙的速度

根據(jù)圖象信息,以上說(shuō)法正確的有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面的例題及點(diǎn)撥,并解決問(wèn)題:

例題:如圖①,在等邊ABC中,MBC邊上一點(diǎn)(不含端點(diǎn)BC),NABC的外角∠ACH的平分線上一點(diǎn),且AM=MN.求證:∠AMN=60°

點(diǎn)撥:如圖②,作∠CBE=60°,BENC的延長(zhǎng)線相交于點(diǎn)E,得等邊BEC,連接EM.易證:ABMEBMSAS),可得AM=EM,∠1=2;又AM=MN,則EM=MN,可得∠3=4;由∠3+1=4+5=60°,進(jìn)一步可得∠1=2=5,又因?yàn)椤?/span>2+6=120°,所以∠5+6=120°,即:∠AMN=60°

問(wèn)題:如圖③,在正方形A1B1C1D1中,M1B1C1邊上一點(diǎn)(不含端點(diǎn)B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分線上一點(diǎn),且A1M1=M1N1.求證:∠A1M1N1=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了加強(qiáng)對(duì)校內(nèi)外安全監(jiān)控,創(chuàng)建平安校園,某學(xué)校計(jì)劃增加15臺(tái)監(jiān)控?cái)z像設(shè)備,現(xiàn)有甲、乙兩種型號(hào)的設(shè)備,其中每臺(tái)價(jià)格,有效監(jiān)控半徑如表所示,經(jīng)調(diào)查,購(gòu)買(mǎi)1臺(tái)甲型設(shè)備比購(gòu)買(mǎi)1臺(tái)乙型設(shè)備多150元,購(gòu)買(mǎi)2臺(tái)甲型設(shè)備比購(gòu)買(mǎi)3臺(tái)乙型設(shè)備少400元.

甲型

乙型

價(jià)格(元/臺(tái))

a

b

有效半徑(米/臺(tái))

150

100

1)求a、b的值;

2)若購(gòu)買(mǎi)該批設(shè)備的資金不超過(guò)11000元,且要求監(jiān)控半徑覆蓋范圍不低于1600米,兩種型號(hào)的設(shè)備均要至少買(mǎi)一臺(tái),請(qǐng)你為學(xué)校設(shè)計(jì)購(gòu)買(mǎi)方案,并計(jì)算最低購(gòu)買(mǎi)費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A,B兩地被大山阻隔,若要從A地到B地,只能沿著如圖所示的公路先從A地到C地,再由C地到B地.現(xiàn)計(jì)劃開(kāi)鑿隧道A,B兩地直線貫通,經(jīng)測(cè)量得:∠CAB=30°,∠CBA=45°,AC=20km,求隧道開(kāi)通后與隧道開(kāi)通前相比,從A地到B地的路程將縮短多少?(結(jié)果精確到0.1km,參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】教材在探索平方差公式時(shí)利用了面積法,面積法除了可以幫助我們記憶公式,還可以直觀地推導(dǎo)或驗(yàn)證公式,俗稱(chēng)“無(wú)字證明”,例如,著名的趙爽弦圖(如圖①,其中四個(gè)直角三角形較大的直角邊長(zhǎng)都為,較小的直角邊長(zhǎng)都為,斜邊長(zhǎng)都為),大正方形的面積可以表示為,也可以表示為,由此推導(dǎo)出重要的勾股定理:如果直角三角形兩條直角邊長(zhǎng)為,斜邊長(zhǎng)為,則

1)圖②為美國(guó)第二十任總統(tǒng)伽菲爾德的“總統(tǒng)證法”,請(qǐng)你利用圖②推導(dǎo)勾股定理.

2)如圖③,在中,邊上的高,,,,設(shè),求的值.

3)試構(gòu)造一個(gè)圖形,使它的面積能夠解釋,畫(huà)在如圖4的網(wǎng)格中,并標(biāo)出字母所表示的線段.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:矩形ABCD中,對(duì)角線AC與BD交于點(diǎn)O,∠BOC=120°,AC=4cm,求矩形ABCD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,點(diǎn)分別在邊,上,有下列條件:

;②;③;④.其中,能使四邊形是平行四邊形的條件有( ).

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,A(a,0),C(0,c)且滿足:(a+6)2+0,長(zhǎng)方形ABCO在坐標(biāo)系中(如圖),點(diǎn)O為坐標(biāo)系的原點(diǎn).

(1)求點(diǎn)B的坐標(biāo).

(2)如圖1,若點(diǎn)M從點(diǎn)A出發(fā),以2個(gè)單位/秒的速度向右運(yùn)動(dòng)(不超過(guò)點(diǎn)O),點(diǎn)N從原點(diǎn)O出發(fā),以1個(gè)單位/秒的速度向下運(yùn)動(dòng)(不超過(guò)點(diǎn)C),設(shè)M、N兩點(diǎn)同時(shí)出發(fā),在它們運(yùn)動(dòng)的過(guò)程中,四邊形MBNO的面積是否發(fā)生變化?若不變,求其值;若變化,求變化的范圍.

(3)如圖2,Ex軸負(fù)半軸上一點(diǎn),且∠CBE=∠CEB,Fx軸正半軸上一動(dòng)點(diǎn),∠ECF的平分線CDBE的延長(zhǎng)線于點(diǎn)D,在點(diǎn)F運(yùn)動(dòng)的過(guò)程中,請(qǐng)?zhí)骄俊?/span>CFE與∠D的數(shù)量關(guān)系,并說(shuō)明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案