【題目】新園小區(qū)計(jì)劃在一塊長(zhǎng)為20米,寬12米的矩形場(chǎng)地上修建三條互相垂直的長(zhǎng)方形甬路(一條橫向、兩條縱向,且橫向、縱向的寬度比為3:2),其余部分種花草.若要使種花草的面積達(dá)到144米2.則橫向的甬路寬為_____米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲.乙兩同學(xué)騎自行車(chē)從A地沿同一條路到B地,已知乙比甲先出發(fā),他們離出發(fā)地的距離S(km)和騎行時(shí)間t(h)之間的函數(shù)關(guān)系如圖1所示,給出下列說(shuō)法:①他們都騎行了20km;②乙在途中停留了0.5h;③甲.乙兩人同時(shí)到達(dá)目的地;④相遇后,甲的速度小于乙的速度.
根據(jù)圖象信息,以上說(shuō)法正確的有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的例題及點(diǎn)撥,并解決問(wèn)題:
例題:如圖①,在等邊△ABC中,M是BC邊上一點(diǎn)(不含端點(diǎn)B,C),N是△ABC的外角∠ACH的平分線上一點(diǎn),且AM=MN.求證:∠AMN=60°.
點(diǎn)撥:如圖②,作∠CBE=60°,BE與NC的延長(zhǎng)線相交于點(diǎn)E,得等邊△BEC,連接EM.易證:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,則EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,進(jìn)一步可得∠1=∠2=∠5,又因?yàn)椤?/span>2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.
問(wèn)題:如圖③,在正方形A1B1C1D1中,M1是B1C1邊上一點(diǎn)(不含端點(diǎn)B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分線上一點(diǎn),且A1M1=M1N1.求證:∠A1M1N1=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了加強(qiáng)對(duì)校內(nèi)外安全監(jiān)控,創(chuàng)建平安校園,某學(xué)校計(jì)劃增加15臺(tái)監(jiān)控?cái)z像設(shè)備,現(xiàn)有甲、乙兩種型號(hào)的設(shè)備,其中每臺(tái)價(jià)格,有效監(jiān)控半徑如表所示,經(jīng)調(diào)查,購(gòu)買(mǎi)1臺(tái)甲型設(shè)備比購(gòu)買(mǎi)1臺(tái)乙型設(shè)備多150元,購(gòu)買(mǎi)2臺(tái)甲型設(shè)備比購(gòu)買(mǎi)3臺(tái)乙型設(shè)備少400元.
甲型 | 乙型 | |
價(jià)格(元/臺(tái)) | a | b |
有效半徑(米/臺(tái)) | 150 | 100 |
(1)求a、b的值;
(2)若購(gòu)買(mǎi)該批設(shè)備的資金不超過(guò)11000元,且要求監(jiān)控半徑覆蓋范圍不低于1600米,兩種型號(hào)的設(shè)備均要至少買(mǎi)一臺(tái),請(qǐng)你為學(xué)校設(shè)計(jì)購(gòu)買(mǎi)方案,并計(jì)算最低購(gòu)買(mǎi)費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A,B兩地被大山阻隔,若要從A地到B地,只能沿著如圖所示的公路先從A地到C地,再由C地到B地.現(xiàn)計(jì)劃開(kāi)鑿隧道A,B兩地直線貫通,經(jīng)測(cè)量得:∠CAB=30°,∠CBA=45°,AC=20km,求隧道開(kāi)通后與隧道開(kāi)通前相比,從A地到B地的路程將縮短多少?(結(jié)果精確到0.1km,參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】教材在探索平方差公式時(shí)利用了面積法,面積法除了可以幫助我們記憶公式,還可以直觀地推導(dǎo)或驗(yàn)證公式,俗稱(chēng)“無(wú)字證明”,例如,著名的趙爽弦圖(如圖①,其中四個(gè)直角三角形較大的直角邊長(zhǎng)都為,較小的直角邊長(zhǎng)都為,斜邊長(zhǎng)都為),大正方形的面積可以表示為,也可以表示為,由此推導(dǎo)出重要的勾股定理:如果直角三角形兩條直角邊長(zhǎng)為,斜邊長(zhǎng)為,則.
(1)圖②為美國(guó)第二十任總統(tǒng)伽菲爾德的“總統(tǒng)證法”,請(qǐng)你利用圖②推導(dǎo)勾股定理.
(2)如圖③,在中,是邊上的高,,,,設(shè),求的值.
(3)試構(gòu)造一個(gè)圖形,使它的面積能夠解釋,畫(huà)在如圖4的網(wǎng)格中,并標(biāo)出字母所表示的線段.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:矩形ABCD中,對(duì)角線AC與BD交于點(diǎn)O,∠BOC=120°,AC=4cm,求矩形ABCD的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,點(diǎn),分別在邊,上,有下列條件:
①;②;③;④.其中,能使四邊形是平行四邊形的條件有( ).
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,A(a,0),C(0,c)且滿足:(a+6)2+=0,長(zhǎng)方形ABCO在坐標(biāo)系中(如圖),點(diǎn)O為坐標(biāo)系的原點(diǎn).
(1)求點(diǎn)B的坐標(biāo).
(2)如圖1,若點(diǎn)M從點(diǎn)A出發(fā),以2個(gè)單位/秒的速度向右運(yùn)動(dòng)(不超過(guò)點(diǎn)O),點(diǎn)N從原點(diǎn)O出發(fā),以1個(gè)單位/秒的速度向下運(yùn)動(dòng)(不超過(guò)點(diǎn)C),設(shè)M、N兩點(diǎn)同時(shí)出發(fā),在它們運(yùn)動(dòng)的過(guò)程中,四邊形MBNO的面積是否發(fā)生變化?若不變,求其值;若變化,求變化的范圍.
(3)如圖2,E為x軸負(fù)半軸上一點(diǎn),且∠CBE=∠CEB,F是x軸正半軸上一動(dòng)點(diǎn),∠ECF的平分線CD交BE的延長(zhǎng)線于點(diǎn)D,在點(diǎn)F運(yùn)動(dòng)的過(guò)程中,請(qǐng)?zhí)骄俊?/span>CFE與∠D的數(shù)量關(guān)系,并說(shuō)明理由
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com