已知:如圖,D是△ABC的邊AB上一點,∠B+∠BCF=180°,DF交AC于點E,點E為DF中點.求證:AE=CE.

證明:∵∠B+∠BCF=180°,
∴AB∥CF,
∴∠A=∠ECF,∠ADE=∠F,
又E為DF的中點,
∴DE=FE,
在△ADE和△CFE中,

∴△ADE≌△CFE(AAS),
∴AE=CE.
分析:由∠B+∠BCF=180°,利用同旁內(nèi)角互補兩直線平行,得到AB與CF平行,利用兩直線平行得到兩對內(nèi)錯角相等,再由E為DF的中點,利用AAS得到三角形ADE與三角形CFE全等,利用全等三角形的對應(yīng)邊相等可得出AE=CE.
點評:此題考查了全等三角形的判定與性質(zhì),以及平行線的判定與性質(zhì),熟練掌握判定與性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

28、已知:如圖,E是△ABC的邊CA延長線上一點,F(xiàn)是AB上一點,D點在BC的延長線上.試證明∠1<∠2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2001•東城區(qū))已知:如圖,AB是半圓O的直徑,C為AB上一點,AC為半圓O′的直徑,BD切半圓O′于點D,CE⊥AB交半圓O于點F.
(1)求證:BD=BE;
(2)若兩圓半徑的比為3:2,試判斷∠EBD是直角、銳角還是鈍角?并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2004•西藏)已知,如圖,P是⊙O外一點,PC切⊙O于點C,割線PO交⊙O于點B、A,且AC=PC.
(1)求證:△PBC≌AOC;
(2)如果PB=2,點M在⊙O的下半圈上運動(不與A、B重合),求當△ABM的面積最大時,AC•AM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,P是∠AOB的角平分線OC上一點.PE⊥OA于E.以P點為圓心,PE長為半徑作⊙P.求證:⊙P與OB相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,AD是一條直線,∠1=65°,∠2=115°.求證:BE∥CF.

查看答案和解析>>

同步練習(xí)冊答案