如圖,在△ABC和△ADE中,點(diǎn)E在BC上,∠BAC=∠DAE,∠B=∠D,AB=AD,
(1)求證:△ABC≌△ADE;
(2)如果∠EAC=25°,將△ADE繞著點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)一個(gè)銳角后與△ABC重合,求這個(gè)旋轉(zhuǎn)角的大小.
考點(diǎn):旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì)
專題:證明題
分析:(1)直接根據(jù)“ASA”可判斷△ABC≌△ADE;
(2)由△ABC≌△ADE得AC=AE,而∠BAC=∠DAE,AB=AD,于是將△ADE繞著點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn),能使AD與AE重合,AE與AC重合,根據(jù)旋轉(zhuǎn)的性質(zhì)得∠EAC等于旋轉(zhuǎn)角.
解答:(1)證明:在△ABC和△ADE中
∠BAC=∠DAE
AB=AD
∠B=∠D

∴△ABC≌△ADE(ASA);
(2)解:∵△ABC≌△ADE,
∴AC=AE,
而∠BAC=∠DAE,AB=AD,
∴將△ADE繞著點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)一個(gè)銳角后與△ABC重合,則AD與AE重合,AE與AC重合,
∴∠EAC等于旋轉(zhuǎn)角,
即旋轉(zhuǎn)角度為25°.
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等;對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角.也考查了全等三角形的判定與性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

用形如ax2+bx+c=0的一元二次方程的配方解:2x2-
2
x-1=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

矩形ABCD的對(duì)角線相交于點(diǎn)O,DE∥AC,CE∥DB,CE、DE交于點(diǎn)E,證明:四邊形DOCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解一元二次方程:(x-5)(2x-1)=3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O經(jīng)過菱形ABCD的三個(gè)頂點(diǎn)A、C、D,且∠B=60°.
(1)求證:AB為⊙O的切線;
(2)若⊙O的半徑為1,求菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC的中線為AD,BE相交于點(diǎn)F,若△ABC的面積是45,求四邊形DCEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC中(∠BAC<60°),AB=AC,AD⊥BC于點(diǎn)D.
(1)如圖1,請(qǐng)你在AD上,僅用圓規(guī)確定E點(diǎn),使∠BEC=60°;(保留痕跡,不寫畫法)
(2)如圖2,請(qǐng)你在AB、AC上,僅用圓規(guī)確定F、G兩點(diǎn),使∠BFC=∠BGC=90°.(保留痕跡,不寫畫法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解方程:x2-x-
1
4
=-
1
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)現(xiàn)有兩組相同的撲克牌,每組兩張,兩張牌的牌面數(shù)字分別是2和3,從每組牌中各隨機(jī)摸出一張牌,如果摸到的牌面數(shù)字相同小紅獲勝,否則小明獲勝,請(qǐng)用列表法或畫樹狀圖的方法說明這個(gè)游戲是否公平?
(2)解方程:
2
x-1
-1=
3
1-x

(3)如圖,AB是⊙O的直徑,點(diǎn)C是圓上一點(diǎn),∠BAC=70°,求∠OCB的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案