【題目】如圖,1=2,PBN上一點,PDBC于點D,AB+BC=2BD.試說明:BAP+BCP=180°.

【答案】見解析

【解析】PE垂直于ABE,根據(jù)角平分線的性質(zhì)可知PD=PE,HL定理可知PBD≌△PBE,可得BD=BE,根據(jù)題中線段和差的關(guān)系,可得PAE≌△PCD,所以可知∠PAE=PCD,根據(jù)∠PAE+PAB=180°,即可證明題中關(guān)系.

證明:如圖,過點PPEBAE.

PDBCPEBM,1=2,

PD=PE.

PDBC,PEBM,PD=PE,BP=BP,

∴△BPD≌△BPE.

BE=BD.

AB+BC=2BD,BC=BD+DC,AB=BE-AE,

AE=CD.

PD=PE,AE=CDPDBC,PEBM,

∴△PCD≌△PAE,

∴∠PCB=PAE.

∵∠BAP+PAE=180°,

∴∠BAP+PCB=180°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點C,與AB的延長線交于點D,DE⊥AD且與AC的延長線交于點E.
(1)求證:DC=DE;
(2)若tan∠CAB= ,AB=3,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD相交于點O,OP∠BOC的平分線,OE⊥AB,OF⊥CD.

(1)圖中除直角外,還有相等的角嗎?請寫出兩對

(2)如果∠AOD=50°,求∠DOP的度數(shù).

(3)OP平分∠EOF嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰Rt△ABC中,∠BAC=90°,DAC的中點,CEBD于點E,交BA的延長線于點F.若BF=12,則△FBC的面積為( )

A. 40 B. 46 C. 48 D. 50

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD⊥AB,BE⊥AC,垂足分別為D,E,BECD相交于點O,且∠1=∠2,則下列結(jié)論正確的個數(shù)為( )

①B=∠C;②△ADO≌△AEO;③△BOD≌△COE;④圖中有四組三角形全等.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料后解決問題:

小明遇到下面一個問題:

計算(2+1)(22+1)(24+1)(28+1).

經(jīng)過觀察,小明發(fā)現(xiàn)如果將原式進行適當(dāng)?shù)淖冃魏罂梢猿霈F(xiàn)特殊的結(jié)構(gòu),進而可以應(yīng)用平方差公式解決問題,具體解法如下:(2+1)(22+1)(24+1)(28+1)

=(2+1)(2﹣1)(22+1)(24+1)(28+1)

=(22﹣1)(22+1)(24+1)(28+1)

=(24﹣1)(24+1)(28+1)

=(28﹣1)(28+1)

=216﹣1

請你根據(jù)小明解決問題的方法,試著解決以下的問題:

(1)(2+1)(22+1)(24+1)(28+1)(216+1)=_____

(2)(3+1)(32+1)(34+1)(38+1)(316+1)=_____

(3)化簡:(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A=3a2b2ab2+abc,小明同學(xué)錯將“2A﹣B“看成”2A+B“,算得結(jié)果為4a2b3ab2+4abc

(1)計算B的表達式;

(2)求出2AB的結(jié)果;

(3)小強同學(xué)說(2)中的結(jié)果的大小與c的取值無關(guān),對嗎?若a=,b=,

(2)中式子的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某出租車從停車場出發(fā),沿著東西向的大街行駛,到晚上6時,一天的行駛記錄如下:(向東行駛記為正,向西行駛記為負(fù),單位:千米)-4、+7、-9、+8、+6、-4、-3、+12

1)到晚上6時,出租車在什么位置?

2)若汽車每千米耗油0.2升,則從停車場出發(fā)到晚上6時,出租車共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線AC,BD交于點O,已知∠AOD=120°,AC=16,則圖中長度為8的線段有( 。

A. 2 B. 4 C. 5 D. 6

查看答案和解析>>

同步練習(xí)冊答案