19、如圖.在等邊△ABC中,∠ABC與∠ACB的平分線相交于點(diǎn)O,且OD∥AB,OE∥AC.
(1)試判定△ODE的形狀,并說(shuō)明你的理由;
(2)線段BD、DE、EC三者有什么關(guān)系?寫(xiě)出你的判斷過(guò)程.
分析:(1)根據(jù)平行線的性質(zhì)及等邊三角形的性質(zhì)可得到△ODE是等邊三角形;
(2)根據(jù)角平分線的性質(zhì)及平行線的性質(zhì)可得到∠DBO=∠DOB,根據(jù)等角對(duì)等邊可得到DB=DO,同理可證明EC=EO,因?yàn)镈E=OD=OE,所以BD=DE=EC.
解答:解:(1)△ODE是等邊三角形,
其理由是:∵△ABC是等邊三角形,
∴∠ABC=∠ACB=60°,(2分)
∵OD∥AB,OE∥AC,
∴∠ODE=∠ABC=60°,∠OED=∠ACB=60°(3分)
∴△ODE是等邊三角形;(4分)

(2)答:BD=DE=EC,
其理由是:∵OB平分∠ABC,且∠ABC=60°,
∴∠ABO=∠OBD=30°,(6分)
∵OD∥AB,
∴∠BOD=∠ABO=30°,
∴∠DBO=∠DOB,
∴DB=DO,(7分)
同理,EC=EO,
∵DE=OD=OE,
∴BD=DE=EC.(8分)
點(diǎn)評(píng):此題主要考查學(xué)生對(duì)等邊三角形的判定及性質(zhì)的理解及運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、如圖,在等邊△ABC的邊BC上任取一點(diǎn)D,作∠ADE=60°,DE交∠C的外角平分線于E,則△ADE是
等邊
三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在等邊△ABC中,D為BC邊上一點(diǎn),E為AC邊上一點(diǎn),且∠ADE=60°,BD=3,CE=2,則△ABC的面積為( 。
A、81
3
B、
81
3
2
C、
81
3
4
D、
81
3
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖,在等邊△ABC中,AD是∠BAC的平分線,點(diǎn)E在AC邊上,且∠EDC=15°.
(1)試說(shuō)明直線AD是線段BC的垂直平分線;
(2)△ADE是什么三角形?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等邊△ABC中,D是AC的中點(diǎn),延長(zhǎng)BC到點(diǎn)E,使CE=CD,AB=10cm.
(1)求BE的長(zhǎng);
(2)△BDE是什么三角形,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等邊△ABC中,BF是高,D是BF上一點(diǎn),且OF=AF,作OE⊥BF,垂足為D,且OE=OB,連AE、AO、BE,求證:
(1)AB=AE;
(2)AE⊥BC; 
(3)AO⊥BE.

查看答案和解析>>

同步練習(xí)冊(cè)答案