如圖,已知OB、OC為△ABC的角平分線,EF∥BC交AB、AC于E、F,△AEF的周長為15,BC長為7,求△ABC的周長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖①,已知點(diǎn)D在AB上,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,且M為EC的中點(diǎn).
(1)連接DM并延長交BC于N,求證:CN=AD;
(2)求證:△BMD為等腰直角三角形;
(3)將△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°時(shí)(如圖②所示位置),△BMD為等腰直角三角形的結(jié)論是否仍成立?若成立,請證明:若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖3,△ABC中,AB=AC,∠A=36°,AB的垂直平分線DE交AC于D,交AB于E,則∠BDC的度數(shù)為( )
A.72° B.36° C.60° D.82°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
兩個(gè)大小不同的等腰直角三角形三角板如圖①所示放置,圖②是由它抽象出的幾何圖形,在同一條直線上,連結(jié).
(1)請找出圖②中的全等三角形,并給予說明(說明:結(jié)論中不得含有未標(biāo)識的字母);
(2)試說明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com