【題目】如圖,AD為∠CAF的角平分線,BD=CD,∠DBC=∠DCB,∠DCA=∠ABD,過DDE⊥ACE,DF⊥ABBA的延長線于F,則下列結(jié)論:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正確的結(jié)論有( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

【答案】A

【解析】

根據(jù)角平分線上的點(diǎn)到角的兩邊距離相等可得DE=DF,再利用“HL”證明RtCDERtBDF全等,根據(jù)全等三角形對應(yīng)邊相等可得CE=AF,利用“HL”證明RtADERtADF全等,根據(jù)全等三角形對應(yīng)邊相等可得AE=AF,然后求出CE=AB+AE;根據(jù)全等三角形對應(yīng)角相等可得∠DBF=DCE,然后求出A、B、C、D四點(diǎn)共圓,根據(jù)同弧所對的圓周角相等可得∠BDC=BAC;DAE=CBD,再根據(jù)全等三角形對應(yīng)角相等可得∠DAE=DAF,然后求出∠DAF=CBD.

解:∵AD平分∠CAF,DEAC,DFAB,

DE=DF,

RtCDERtBDF中,

RtCDERtBDF(HL),故①正確;

CE=AF,

RtADERtADF中,

,

RtADERtADF(HL),

AE=AF,

CE=AB+AF=AB+AE,故②正確;

RtCDERtBDF,

∴∠DBF=DCE

A、B、C、D四點(diǎn)共圓,

∴∠BDC=BAC,故③正確;

DAE=CBD,

RtADERtADF,

∴∠DAE=DAF,

∴∠DAF=CBD,故④正確;

綜上所述,正確的結(jié)論有①②③④共4個(gè).

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,折疊長方形ABCD的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知AB=8cm,BC=10cm,求EF的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知E、F分別是ABCD的邊BC、AD上的點(diǎn),且BE=DF

(1)求證:四邊形AECF是平行四邊形;

(2)若四邊形AECF是菱形,且BC=10,∠BAC=90°,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中, 厘米, 厘米,點(diǎn)DAB的中點(diǎn).如果點(diǎn)P在線段BC上以4厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動,同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動.當(dāng)點(diǎn)Q的運(yùn)動速度為_______ 厘米/秒時(shí),能夠在某一時(shí)刻使BPDCQP全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ACB=90°AC=BC,BECEE,ADCED,BE=3cmAD=9cm

求:(1DE的長;

2)若CEABC的外部(如圖),其它條件不變,DE的長是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是若干個(gè)粗細(xì)均勻的鐵環(huán)最大限度的拉伸組成的鏈條,已知鐵環(huán)粗0.5厘米,每個(gè)鐵環(huán)長4.6厘米,設(shè)鐵環(huán)間處于最大限度的拉伸狀態(tài)

(1)填表:

鐵環(huán)個(gè)數(shù)

1

2

3

4

鏈條長(cm)

4.6

8.2

_____

____

(2)設(shè)n個(gè)鐵環(huán)長為y厘米,請用含n的式子表示y;

(3)若要組成2.17米長的鏈條,至少需要多少個(gè)鐵環(huán)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對角線AC,BD相交于點(diǎn)O,E,F(xiàn)是對角線AC上的兩點(diǎn),當(dāng)E,F(xiàn)滿足下列哪個(gè)條件時(shí),四邊形DEBF不一定是平行四邊形(  )

A. AE=CF B. DE=BF C. ∠ADE=∠CBF D. ∠AED=∠CFB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點(diǎn)D.

(1)求證:BE=CF.

(2)當(dāng)四邊形ACDE為菱形時(shí),求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,銳角△ABC中,邊BC長為3,高AH長為2,矩形EFMN的邊MN在BC邊上,其余兩個(gè)頂點(diǎn)E,F(xiàn)分別在AB,AC邊上,EF交AH于點(diǎn)G.
(1)求的值;
(2)當(dāng)EN為何值時(shí),矩形EFMN的面積為△ABC面積的四分之一.

查看答案和解析>>

同步練習(xí)冊答案