【題目】如圖1,拋物線y= -x2+bx+c與x軸負(fù)半軸交于A點(diǎn),與x軸正半軸交于B點(diǎn),與y軸正半軸交于C點(diǎn),CO=BO,AB=14.
(1)求拋物線的解析式;
(2)如圖2, 點(diǎn)M、N在第一象限內(nèi)拋物線上,M在N點(diǎn)下方,連CM、CN,∠OCN+∠OCM=180°, 設(shè)M點(diǎn)橫坐標(biāo)為m,N點(diǎn)橫坐標(biāo)為n,求m與n的函數(shù)關(guān)系式(n是自變量);
(3)如圖3, 在(2)條件下,連AN交CO于E,過(guò)M作MF⊥AB于F,連BM、EF,若∠AFE=2∠FMB=2β, 求N點(diǎn)坐標(biāo).
【答案】(1);(2)m與n的函數(shù)關(guān)系式為;(3)的坐標(biāo)為.
【解析】
(1)根據(jù)題目給出條件用一個(gè)未知數(shù)舍出點(diǎn)A,B,C的坐標(biāo),代入解析式求解即可;
(2)根據(jù)題目給出特殊條件∠OCN+∠OCM=180°,得出直線與直線關(guān)于直線對(duì)稱,設(shè)點(diǎn)代入即可;
(3)根據(jù)二倍角關(guān)系,在大角中構(gòu)造相似三角形,大膽利用一個(gè)未知數(shù)求出線段長(zhǎng)度,利用三角形的角平分線性質(zhì)求解.
解:(1)設(shè),則;
將代入y= -x2+bx+c得,
;
解得:;
∴拋物線的解析式:;
(2)∵∠OCN+∠OCM=180°;
可得直線與直線關(guān)于對(duì)稱;
設(shè);
又;
可得;
設(shè);
作點(diǎn)N關(guān)于的對(duì)稱點(diǎn);
則;
又在上;
;
化簡(jiǎn)得;
∴m與n的函數(shù)關(guān)系式為;
(3);
;
在y正半軸上取一點(diǎn)H使得;
則有;
即;
解得;
設(shè)直線AN的解析式為:
由可得;
;
又;
;
又;
;
在中,;
由勾股定理可得;
;
;
又∵∠AFE=2∠FMB=2β;
平分;
則有;
即;
解得(舍),(舍),(舍),;
;
的坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從正五邊形的五個(gè)頂點(diǎn)中,任取四個(gè)頂點(diǎn)連成四邊形,則這個(gè)四邊形是等腰梯形的概率是( )
A.1B. C. D.0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一條拋物線與軸交于,兩點(diǎn),與軸交于點(diǎn),為拋物線的頂點(diǎn),點(diǎn)在軸上.
(1)求拋物線解析式;
(2)若,求點(diǎn)的坐標(biāo);
(3)過(guò)點(diǎn)作直線交拋物線于,是否存在以點(diǎn),,,為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(4)坐標(biāo)平面內(nèi)一點(diǎn)到點(diǎn)的距離為1個(gè)單位,求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,設(shè)是一個(gè)銳角三角形,且,為其外接圓,分別為其外心和垂心,為圓直徑,為線段上一動(dòng)點(diǎn)且滿足.
(1)證明:為中點(diǎn);
(2)過(guò)作的平行線交于點(diǎn),若為的中點(diǎn),證明: ;
(3)直線與圓的另一交點(diǎn)為(如圖2),以為直徑的圓與圓的另一交點(diǎn)為.證明:若三線共點(diǎn),則;反之也成立.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在小正方形邊長(zhǎng)均為1的方格紙中有線段AB,點(diǎn)A、B均在小正方形的頂點(diǎn)上.
(1)以AB為一邊畫Rt△ABC(點(diǎn)C在小正方形的頂點(diǎn)上),使△ABC的周長(zhǎng)為+5;
(2)在(1)的條件下,以AB為一邊作△ABD,(點(diǎn)D在小正方形的頂點(diǎn)上),使,且△ABD的面積為2;連接CD,并直接寫出∠ADC的正切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“元旦大酬賓!”,某商場(chǎng)設(shè)計(jì)的促銷活動(dòng)如下:在一個(gè)不透明的箱子里放有3張相同的卡片,卡片上分別標(biāo)有“10元”、“20元”和“30元”的字樣,規(guī)定:在本商場(chǎng)同一日內(nèi),顧客每消費(fèi)滿300元,就可以在箱子里摸出一張卡片,記下錢數(shù)后放回,再?gòu)闹忻鲆粡埧ㄆ虉?chǎng)根據(jù)兩張卡片所標(biāo)金額的和返還相等價(jià)格的購(gòu)物券,購(gòu)物券可以在本商場(chǎng)消費(fèi).某顧客剛好消費(fèi)300元.
(1)該顧客最多可得到 元購(gòu)物券;
(2)請(qǐng)你用畫樹狀圖或列表的方法,求出該顧客所獲得購(gòu)物券的金額不低于40元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A和點(diǎn)B都是反比例函數(shù)在第一象限內(nèi)圖象上的點(diǎn),點(diǎn)A的橫坐標(biāo)為1,點(diǎn)B的縱坐標(biāo)為1,連接AB,以線段AB為邊的矩形ABCD的頂點(diǎn)D,C恰好分別落在x軸,y軸的負(fù)半軸上,連接AC,BD交于點(diǎn)E,若的面積為6,則k的值為( )
A.2B.3C.6D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是矩形
(1)如圖1,、分別是、上的點(diǎn),,垂足為,連接.
①求證:;
②若為的中點(diǎn),求證:;
(2)如圖2,將矩形沿折疊,點(diǎn)落在點(diǎn)處,點(diǎn)落在邊的點(diǎn)處,連接交于點(diǎn),是的中點(diǎn).若,,直接寫出的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,下列有個(gè)結(jié)論:①;②;③;④.請(qǐng)你將正確結(jié)論的番號(hào)都寫出來(lái)_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com