【題目】如圖1,拋物線y= x2+bx+cx軸負(fù)半軸交于A點(diǎn),與x軸正半軸交于B點(diǎn),與y軸正半軸交于C點(diǎn),COBO,AB=14

1)求拋物線的解析式;

2)如圖2, 點(diǎn)M、N在第一象限內(nèi)拋物線上,MN點(diǎn)下方,連CMCN,∠OCN+OCM180° 設(shè)M點(diǎn)橫坐標(biāo)為m,N點(diǎn)橫坐標(biāo)為n,求mn的函數(shù)關(guān)系式(n是自變量)

3)如圖3, (2)條件下,連ANCOE,過(guò)MMFABF,連BM、EF,若∠AFE2FMB=2β, N點(diǎn)坐標(biāo).

【答案】1;(2mn的函數(shù)關(guān)系式為;(3的坐標(biāo)為.

【解析】

1)根據(jù)題目給出條件用一個(gè)未知數(shù)舍出點(diǎn)A,BC的坐標(biāo),代入解析式求解即可;

2)根據(jù)題目給出特殊條件∠OCN+OCM180°,得出直線與直線關(guān)于直線對(duì)稱,設(shè)點(diǎn)代入即可;

3)根據(jù)二倍角關(guān)系,在大角中構(gòu)造相似三角形,大膽利用一個(gè)未知數(shù)求出線段長(zhǎng)度,利用三角形的角平分線性質(zhì)求解.

解:(1)設(shè),則;

代入y= x2+bx+c得,

;

解得:

拋物線的解析式:;

2)∵∠OCN+OCM180°

可得直線與直線關(guān)于對(duì)稱;

設(shè);

;

可得

設(shè);

作點(diǎn)N關(guān)于的對(duì)稱點(diǎn);

;

上;

;

化簡(jiǎn)得;

mn的函數(shù)關(guān)系式為;

3;

;

y正半軸上取一點(diǎn)H使得;

則有;

解得;

設(shè)直線AN的解析式為:

可得;

;

;

;

;

中,;

由勾股定理可得

;

又∵∠AFE2FMB=2β;

平分;

則有

;

解得(),(),(),;

;

的坐標(biāo)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從正五邊形的五個(gè)頂點(diǎn)中,任取四個(gè)頂點(diǎn)連成四邊形,則這個(gè)四邊形是等腰梯形的概率是( )

A.1B. C. D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一條拋物線與軸交于兩點(diǎn),與軸交于點(diǎn),為拋物線的頂點(diǎn),點(diǎn)軸上.

1)求拋物線解析式;

2)若,求點(diǎn)的坐標(biāo);

3)過(guò)點(diǎn)作直線交拋物線于,是否存在以點(diǎn),,為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

4)坐標(biāo)平面內(nèi)一點(diǎn)到點(diǎn)的距離為1個(gè)單位,求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,設(shè)是一個(gè)銳角三角形,且為其外接圓,分別為其外心和垂心,為圓直徑,為線段上一動(dòng)點(diǎn)且滿足

1)證明:中點(diǎn);

2)過(guò)的平行線交于點(diǎn),若的中點(diǎn),證明:

3)直線與圓的另一交點(diǎn)為(如圖2),以為直徑的圓與圓的另一交點(diǎn)為.證明:若三線共點(diǎn),則;反之也成立.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在小正方形邊長(zhǎng)均為1的方格紙中有線段AB,點(diǎn)AB均在小正方形的頂點(diǎn)上.

1)以AB為一邊畫RtABC(點(diǎn)C在小正方形的頂點(diǎn)上),使ABC的周長(zhǎng)為+5;

2)在(1)的條件下,以AB為一邊作ABD,(點(diǎn)D在小正方形的頂點(diǎn)上),使,且ABD的面積為2;連接CD,并直接寫出∠ADC的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】元旦大酬賓!”,某商場(chǎng)設(shè)計(jì)的促銷活動(dòng)如下:在一個(gè)不透明的箱子里放有3張相同的卡片,卡片上分別標(biāo)有“10、“20“30的字樣,規(guī)定:在本商場(chǎng)同一日內(nèi),顧客每消費(fèi)滿300元,就可以在箱子里摸出一張卡片,記下錢數(shù)后放回,再?gòu)闹忻鲆粡埧ㄆ虉?chǎng)根據(jù)兩張卡片所標(biāo)金額的和返還相等價(jià)格的購(gòu)物券,購(gòu)物券可以在本商場(chǎng)消費(fèi).某顧客剛好消費(fèi)300元.

1)該顧客最多可得到   元購(gòu)物券;

2)請(qǐng)你用畫樹狀圖或列表的方法,求出該顧客所獲得購(gòu)物券的金額不低于40元的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A和點(diǎn)B都是反比例函數(shù)在第一象限內(nèi)圖象上的點(diǎn),點(diǎn)A的橫坐標(biāo)為1,點(diǎn)B的縱坐標(biāo)為1,連接AB,以線段AB為邊的矩形ABCD的頂點(diǎn)D,C恰好分別落在x軸,y軸的負(fù)半軸上,連接AC,BD交于點(diǎn)E,若的面積為6,則k的值為(

A.2B.3C.6D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是矩形

(1)如圖1,分別是、上的點(diǎn),,垂足為,連接

求證:;

的中點(diǎn),求證:;

(2)如圖2,將矩形沿折疊,點(diǎn)落在點(diǎn)處,點(diǎn)落在邊的點(diǎn)處,連接于點(diǎn),的中點(diǎn).,直接寫出的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,下列有個(gè)結(jié)論:①;②;③;④.請(qǐng)你將正確結(jié)論的番號(hào)都寫出來(lái)_______

查看答案和解析>>

同步練習(xí)冊(cè)答案