如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=的圖象交于A,B兩點,與x軸交于點C,與y軸交于點D,已知OA=,tan∠AOC=,點B的坐標為(m,-2).
(1)求反比例函數(shù)的解析式;
(2)求一次函數(shù)的解析式;
(3)在y軸上存在一點P,使得△PDC與△ODC相似,請你求出P點的坐標.

【答案】分析:(1)中,因為OA=,tan∠AOC=,則可過A作AE垂直x軸,垂足為E,利用三角函數(shù)和勾股定理即可求出AE=1,OE=3,從而可知A(3,1),又因點A在反比例函數(shù)y=的圖象上,由此可求出開k=3,從而求出反比例函數(shù)的解析式.
(2)中,因為一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=的圖象交于A,B兩點,點B的坐標為(m,-2).所以3=-2x.
即m=-,B(-,-2).然后把點A、B的坐標代入一次函數(shù)的解析式,得到關于a、b的方程組,解之即可求出a、b的值,最終寫出一次函數(shù)的解析式.
(3)因為在y軸上存在一點P,使得△PDC與△ODC相似,而∠PDC和∠ODC是公共角,所以有△PDC∽△CDO,,而點C、D分別是一次函數(shù)y=x-1的圖象與x軸、y軸的交點,因此有C(,0)、D(0,-1).OC=,OD=1,DC=
進而可求出PD=,OP=.寫出點P的坐標.
解答:解:(1)過A作AE垂直x軸,垂足為E,
∵tan∠AOC=
∴OE=3AE
∵OA=,OE2+AE2=10,
∴AE=1,OE=3
∴點A的坐標為(3,1).
∵A點在雙曲線上,
,
∴k=3.
∴雙曲線的解析式為

(2)∵點B(m,-2)在雙曲線上,
∴-2=,
∴m=-
∴點B的坐標為(-,-2).
,∴
∴一次函數(shù)的解析式為y=x-1.

(3)過點C作CP⊥AB,交y軸于點P,
∵C,D兩點在直線y=x-1上,
∴C,D的坐標分別是:C(,0),D(0,-1).
即:OC=,OD=1,
∴DC=
∵△PDC∽△CDO,
,
∴PD=
又OP=DP-OD=
∴P點坐標為(0,).
點評:此類題目往往和三角函數(shù)相聯(lián)系,在考查學生待定系數(shù)法的同時,也綜合考查了學生的解直角三角形、相似三角形的知識,是數(shù)形結合的典型題例,它的解決需要學生各方面知識的靈活運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,一次函數(shù)y=kx+2的圖象與反比例函數(shù)y=
m
x
的圖象交于點P,點P在第一象限.PA⊥x軸于點A,PB⊥y軸于點B.一次函數(shù)的圖象分別交x軸、y軸于點C、D,且S△PBD=4,
OC
OA
=
1
2

(1)求點D的坐標;
(2)求一次函數(shù)與反比例函數(shù)的解析式;
(3)根據(jù)圖象寫出當x>0時,一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,一次函數(shù)y1=-x-1與反比例函數(shù)y2=-
2
x
圖象相交于點A(-2,1)、B(1,-2),則使y1>y2的x的取值范圍是(  )
A、x>1
B、x<-2或0<x<1
C、-2<x<1
D、-2<x<0或x>1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、如圖,一次函數(shù)y=kx+b(k<0)的圖象經(jīng)過點A.當y<3時,x的取值范圍是
x>2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•成都)如圖,一次函數(shù)y1=x+1的圖象與反比例函數(shù)y2=
kx
(k為常數(shù),且k≠0)的圖象都經(jīng)過點
A(m,2)
(1)求點A的坐標及反比例函數(shù)的表達式;
(2)結合圖象直接比較:當x>0時,y1和y2的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,一次函數(shù)y=x+3的圖象與x軸、y軸分別交于點A、點B,與反比例函數(shù)y=
4x
(x>0)
的圖象交于點C,CD⊥x軸于點D,求四邊形OBCD的面積.

查看答案和解析>>

同步練習冊答案