如圖1,平行四邊形紙片的面積為120,.沿兩對(duì)角線將四邊形剪成甲、乙、丙、丁四個(gè)三角形紙片.若將甲、丙合并(、重合)形成對(duì)稱圖形戊,如圖2所示,則圖形戊的兩條對(duì)角線長(zhǎng)度之和是      。

 

【答案】

26

【解析】如圖,則可得對(duì)角線EF⊥AD,且EF與平行四邊形的高相等.

∵平行四邊形紙片ABCD的面積為120,AD=20,

∴EF=120/20 =6,

又BC=20,

∴對(duì)角線之和為20+6=26,

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,在平行四邊形ABCD紙片中,AC⊥AB,AC與BD相交于O,將紙△ABC沿對(duì)角線AC翻轉(zhuǎn)180°,得到△AB′C,問以A、C、D、B′為頂點(diǎn)的四邊形是什么形狀的四邊形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD的紙片中,AC⊥AB,AC與BD相交于O,將△ABC沿對(duì)角線AC翻轉(zhuǎn)精英家教網(wǎng)180°,得到△AB′C.
(1)求證:以A、C、D、B′為頂點(diǎn)的四邊形是矩形;
(2)若四邊形ABCD的面積S=12cm,求翻轉(zhuǎn)后紙片部分的面積,即S△ACB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD紙片中,AC⊥AB,AC與BD相交于O,將紙△ABC沿對(duì)角線AC翻轉(zhuǎn)180°,得到△AB′C,
(1)問以A、C、D、B′為頂點(diǎn)的四邊形是什么形狀的四邊形?證明你的結(jié)論;
(2)若四邊形ABCD的面積為20cm2,求翻轉(zhuǎn)后紙片重疊部分的面積(即△ACE的面積).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省深圳市南山區(qū)初三上學(xué)期期末統(tǒng)考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在平行四邊形ABCD紙片中,AC⊥AB,AC與BD相交于O,將紙△ABC沿對(duì)角線AC翻轉(zhuǎn)180°,得到△AB′C,

(1)問以A、C、D、B′為頂點(diǎn)的四邊形是什么形狀的四邊形?證明你的結(jié)論;(3分)

(2)若四邊形ABCD的面積為20cm2,求翻轉(zhuǎn)后紙片重疊部分的面積(即△ACE的面積).(3分)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007-2008學(xué)年九年級(jí)第一學(xué)期數(shù)學(xué)階段性考試卷(第1-4章)(解析版) 題型:解答題

如圖,在平行四邊形ABCD的紙片中,AC⊥AB,AC與BD相交于O,將△ABC沿對(duì)角線AC翻轉(zhuǎn)180°,得到△AB′C.
(1)求證:以A、C、D、B′為頂點(diǎn)的四邊形是矩形;
(2)若四邊形ABCD的面積S=12cm,求翻轉(zhuǎn)后紙片部分的面積,即S△ACB

查看答案和解析>>

同步練習(xí)冊(cè)答案