如圖,在平行四邊形ABCD紙片中,AC⊥AB,AC與BD相交于O,將紙△ABC沿對角線AC翻轉(zhuǎn)180°,得到△AB′C,
(1)問以A、C、D、B′為頂點的四邊形是什么形狀的四邊形?證明你的結(jié)論;
(2)若四邊形ABCD的面積為20cm2,求翻轉(zhuǎn)后紙片重疊部分的面積(即△ACE的面積).
分析:(1)以A、C、D、B′為頂點的四邊形是矩形,根據(jù)平行四邊形的性質(zhì)以及已知條件求證出四邊形ACDB′是平行四邊形,進而求出四邊形ACDB′是矩形;
(2)根據(jù)矩形的性質(zhì)以及平行四邊形的性質(zhì)求出△ACD的面積,因為△AEC和△EDC可以看作是等底等高的三角形,所以S△AEC=
1
2
S△ACD=5cm2
解答:(1)以A、C、D、B′為頂點的四邊形是矩形,
理由如下:四邊形ABCD是平行四邊形.
∴AB平行且等于CD.
∵△AB′C是由△ABC翻折得到的,AB⊥AC,
∴AB=AB′,點A、B、B′在同一條直線上.
∴AB′∥CD,
∴四邊形ACDB′是平行四邊形.
∵B′C=BC=AD.
∴四邊形ACDB′是矩形;
(2)由四邊形ACDB′是矩形,得AE=DE.
∵S?ABCD=20cm2,
∴S△ACD=10cm2
∴S△AEC=
1
2
S△ACD=5cm2
點評:本題綜合應用平行四邊形、三角形面積公式、平行四邊形中圖形的面積關系,解題的關鍵是發(fā)現(xiàn)△ACE的面積為矩形面積的四分之一.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點O,則圖中共有
9
個平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點E,∠ADC的平分線交AB于點F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點M是邊AD上一點,且DM:AD=1:3.點E、F分別從A、C同時出發(fā),以1厘米/秒的速度分別沿AB、CB向點B運動(當點F運動到點B時,點E隨之停止運動),EM、CD精英家教網(wǎng)的延長線交于點P,F(xiàn)P交AD于點Q.設運動時間為x秒,線段PC的長為y厘米.
(1)求y與x之間函數(shù)關系式,并寫出自變量x的取值范圍;
(2)當x為何值時,PF⊥AD?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=2
2
,AO=
3
,OB=
5
,則下列結(jié)論中不正確的是( 。
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長為
4cm
4cm

查看答案和解析>>

同步練習冊答案