【題目】如圖,O是△ABC的外心,OD⊥BC,OE⊥AC,OF⊥AB,則OD:OE:OF等于( ).

A.a:b:c
B.
C.sinA:sinB:sinC
D.cosA:cosB:cosC

【答案】D
【解析】作出△ABC的外接圓,連接OA、OB、OC,

由垂徑定理和圓周角定理可得∠B= ∠AOC=∠AOE,同理可知∠A=∠BOD、∠C=∠AOF,若設⊙O的半徑為R,

則:OD=Rcos∠BOD=Rcos∠A,

OE=Rcos∠AOE=Rcos∠B,

OF=Rcos∠BOF=Rcos∠C,

故OD:OE:OF=cos∠A:cos∠B:cos∠C.

所以答案是:D.


【考點精析】關于本題考查的垂徑定理和圓周角定理,需要了解垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧;頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小學時候大家喜歡玩的幻方游戲,老師稍加創(chuàng)新改成了幻圓游戲,現(xiàn)在將﹣12、﹣3、4、﹣5、6、﹣7、8分別填入圖中的圓圈內,使橫、豎以及內外兩圈上的4個數(shù)字之和都相等,老師已經幫助同學們完成了部分填空,則圖中a+b的值為(  )

A. 6或﹣3 B. 81 C. 1或﹣4 D. 1或﹣1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖①,在平面直角坐標系xOy中,A(0,5),C( ,0),AOCD為矩形,AE垂直于對角線OD于E,點F是點E關于y軸的對稱點,連AF、OF.

(1)求AF和OF的長;
(2)如圖②,將△OAF繞點O順時針旋轉一個角α(0°<α<180°),記旋轉中的△OAF為△OA′F′,在旋轉過程中,設A′F′所在的直線與線段AD交于點P,與線段OD交于點Q,是否存在這樣的P、Q兩點,使△DPQ為等腰三角形?若存在,求出此時點P坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC的外角∠ACD的平分線CP與∠ABC平分線BP交于點P,若∠BPC=40°,則∠CAP的度數(shù)是(

A. 30°; B. 40° C. 50°; D. 60°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【試題背景】已知:l ∥m∥n∥k,平行線l與m、m與n、n與k之間的距離分別為d1、d2、d3 , 且d1 =d3 = 1,d2 = 2 .我們把四個頂點分別在l、m、n、k這四條平行線上的四邊形稱為“格線四邊形”.
(1)【探究1】如圖1,正方形ABCD為“格線四邊形”,BEL于點E,BE的反向延長線交直線k于點F. 求正方形ABCD的邊長.

(2)【探究2】矩形ABCD為“格線四邊形”,其長 :寬 = 2 :1 ,求矩形ABCD的寬
(3)【探究3】如圖2,菱形ABCD為“格線四邊形”且∠ADC=60°,△AEF是等邊三角形, 于點E, ∠AFD=90°,直線DF分別交直線l、k于點G、M. 求證:EC=DF.

(4)【拓 展】如圖3,l ∥k,等邊三角形ABC的頂點A、B分別落在直線l、k上, 于點B,且AB=4 ,∠ACD=90°,直線CD分別交直線l、k于點G、M,點D、E分別是線段GM、BM上的動點,且始終保持AD=AE, 于點H.

猜想:DH在什么范圍內,BC∥DE?直接寫出結論。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①是一個長為4a、寬為b的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成的一個“回形”正方形(如圖②).

1)圖②中的陰影部分的面積為   

2)觀察圖②請你寫出 a+b2、(ab2、ab之間的等量關系是   

3)根據(2)中的結論,若,則(p+q2   

4)實際上有許多代數(shù)恒等式可以用圖形的面積來表示.如圖③,它表示了   

5)試畫出一個幾何圖形,使它的面積能表示(2a+b)(a+2b)=2a2+5ab+2b2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩輛公共汽車分別自A、B兩地同時出發(fā),相向而行。甲車行駛85千米后與乙車相遇,然后繼續(xù)前進。兩車到達對方的出發(fā)點等候30分鐘立即依原路返回。當甲車行駛65千米后又與乙車相遇,求A、B兩地的距離。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩家超市同價銷售同一款可拆分式驅蚊器,1套驅蚊器由1個加熱器和1瓶電熱蚊香液組成.電熱蚊香液作為易耗品可單獨購買,1瓶電熱蚊香液的售價是1套驅蚊器的.已知電熱蚊香液的利潤率為20%,整套驅蚊器的利潤率為25%.張阿姨從甲超市買了1套這樣的驅蚊器,并另外買了4瓶電熱蚊香液,超市從中共獲利10元.

(1)求1套驅蚊器和1瓶電熱蚊香液的售價;

(2)為了促進該款驅蚊器的銷售,甲超市打8.5折銷售,而乙超市采用的銷售方法是顧客每買1套驅蚊器送1瓶電熱蚊香液.在這段促銷期間,甲超市銷售2000套驅蚊器,而乙超市在驅蚊器銷售上獲得的利潤不低于甲超市的1.2倍.問乙超市至少銷售多少套驅蚊器?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線相交于點,,平分.

1)若,求的度數(shù);

2)若,請直接寫出的度數(shù);

3)觀察(1)、(2)的結果,猜想的數(shù)量關系,并說明理由.

查看答案和解析>>

同步練習冊答案