【題目】基礎(chǔ)計算

1)(-10++7); 2)(-45+-39

3)(-3--7 433--27

【答案】1-3;(2-84;(34;(460

【解析】

1)根據(jù)有理數(shù)加法法則進(jìn)行計算即可;

2)根據(jù)有理數(shù)加法法則進(jìn)行計算即可;

3)根據(jù)有理數(shù)減法法則進(jìn)行計算即可;

4)根據(jù)有理數(shù)減法法則進(jìn)行計算即可.

解(1(-10)+(+7)=-(10-7)=-3

2(-45)+(-39)=-(45+39)=-84;

3(-3)-(-7)=(-3)+7=4

433-(-27)=33+27=60

故答案為(1-3;(2-84;(34;(460

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算正確的是( )
A.a3·a2=a6
B.(a2)3=a6
C.(2a2)3=6a6
D.(-2a3)2=-4a6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

上課時李老師提出這樣一個問題:對于任意實數(shù)x,關(guān)于x的不等式x2﹣2x﹣1﹣a>0恒成立,求a的取值范圍.

小捷的思路是:原不等式等價于x2﹣2x﹣1>a,設(shè)函數(shù)y1=x2﹣2x﹣1,y2=a,畫出兩個函數(shù)的圖象的示意圖,于是原問題轉(zhuǎn)化為函數(shù)y1的圖象在y2的圖象上方時a的取值范圍.

請結(jié)合小捷的思路回答:

對于任意實數(shù)x,關(guān)于x的不等式x2﹣2x﹣1﹣a>0恒成立,則a的取值范圍是   

參考小捷思考問題的方法,解決問題:

關(guān)于x的方程x﹣4=在0<a<4范圍內(nèi)有兩個解,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果拋物線y=mx2+(m﹣3)x﹣m+2經(jīng)過原點,那么m=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的個數(shù)有( )
①已知直角三角形的面積為2,兩直角邊的比為1:2,則斜邊長為 ;
②直角三角形的最大邊長為 ,最短邊長為1,則另一邊長為
③在△ABC中,若∠A:∠B:∠C=1:5:6,則△ABC為直角三角形;
④等腰三角形面積為12,底邊上的高為4,則腰長為5.
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果a+32a6是一個數(shù)的平方根,這個數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在我國沿海有一艘不明國籍的輪船進(jìn)入我國海域,我海軍甲、乙兩艘巡邏艇立即從相距13nmile的A,B兩個基地前去攔截,六分鐘后同時到達(dá)C地將其攔截.已知甲巡邏艇每小時航行120nmile,乙巡邏艇每小時航行50nmile,航向為北偏西40°,問:甲巡邏艇的航向是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一列快車從甲地勻速駛往乙地,一列慢車從乙地勻速駛往甲地,兩車同時出發(fā).不久,第二列快車也從甲地發(fā)往乙地,速度與第一列快車相同.在第一列快車與慢車相遇30分后,第二列快車與慢車相遇.設(shè)慢車行駛的時間為x(單位:時),慢車與第一、第二列快車之間的距離y(單位:千米)與x(單位:時)之間的函數(shù)關(guān)系如圖1、圖2,根據(jù)圖象信息解答下列問題:

(1)甲、乙兩地之間的距離為_____千米.

(2)求圖1中線段CD所表示的y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

(3)請直接在圖2中的____內(nèi)填上正確的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形其中兩條邊的長度為511,則該等腰三角形的周長為(

A. 21B. 27C. 2132D. 2127

查看答案和解析>>

同步練習(xí)冊答案