已知△ABC中,∠C=90°,三邊為a,b,c,若關(guān)于x的方程數(shù)學(xué)公式的兩根平方和為12,則a:b:c=________.

1:2:3
分析:先把關(guān)于x的方程整理為:(c-a)x2-2bx+c+a=0,設(shè)此方程兩根為x1,x2,根據(jù)根與系數(shù)的關(guān)系即可求解.
解答:先把關(guān)于x的方程整理為:(c-a)x2-2bx+c+a=0,
設(shè)此方程兩根為x1,x2,∴x1+x2=,x1x2=,
∴x12+x22=(x1+x22-2x1x2=12,
-2=12,把b2=a2-c2代入得:c2-4ac+3c2=0,
(c-a)(c-3a)=0,
∵c>0,∴c=3a,b=2a,
a:b:c=1:2:3.
故答案為:1:2:3.
點(diǎn)評:本題考查了根與系數(shù)的關(guān)系及勾股定理,難度適中,關(guān)鍵是掌握x1,x2是方程x2+px+q=0的兩根時,x1+x2=-p,x1x2=q,反過來可得p=-(x1+x2),q=x1x2,前者是已知系數(shù)確定根的相關(guān)問題,后者是已知兩根確定方程中未知系數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC中,∠ACB=90°,AC=BC,P、Q分別是邊AB、BC上的動點(diǎn),且點(diǎn)P不與點(diǎn)A、B重合,點(diǎn)Q不與點(diǎn)B、C重合.
(1)在以下五個結(jié)論中:①∠CQP=45°;②PQ=AC;③以A、P、C為頂點(diǎn)的三角形全等于△PQB;④以A、P、C為頂點(diǎn)的三角形全等于△CPQ;⑤以A、P、C為頂點(diǎn)的三角形相似于△CPQ.一定不成立的是
 
.(只需將結(jié)論的代號填入題中的模線上).
(2)設(shè)AC=BC=1,當(dāng)CQ的長取不同的值時,△CPQ是否可能為直角三角形?若可能,請說明所有的精英家教網(wǎng)情況;若不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知△ABC中,DE∥BC,EF∥AB,AB=3,BC=6,AD:DB=2:1,則四邊形DBFE的周長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知△ABC中,AB=AC,以AB為直徑作⊙O交BC于D,交AC于E,過D作DF⊥AC于F
(1)求證:DF是⊙O的切線;
(2)連接DE,且AB=4,若∠FDC=30°,試求△CDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC中,AB=3,AC=5,第三邊BC的長為一元二次方程x2-9x+20=0的一個根,則該三角形為
等腰或直角
等腰或直角
三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,AB=AC,AB垂直平分線交AC于D,連接BE,若∠A=40°,則∠EBC=( 。

查看答案和解析>>

同步練習(xí)冊答案