【題目】如圖,CD是Rt△ABC斜邊AB上的高,將△BCD沿CD折疊,B點(diǎn)恰好落在AB的中點(diǎn)E處,則∠A等于______度.
【答案】30
【解析】據(jù)直角三角形斜邊上的中線等于斜邊的一半可得到AC=AE,從而得到∠A=∠ACE,再由折疊的性質(zhì)及三角形的外角性質(zhì)得到∠B=2∠A,從而不難求得∠A的度數(shù).
解:∵在Rt△ABC中,CE是斜邊AB的中線,
∴AE=CE,
∴∠A=∠ACE,
∵△CED是由△CBD折疊而成,
∴∠B=∠CED,
∵∠CEB=∠A+∠ACE=2∠A,
∴∠B=2∠A,
∵∠A+∠B=90°,
∴∠A=30°.
故答案為:30.
考查:(1)在直角三角形中,斜邊上的中線等于斜邊的一半;(2)三角形的外角性質(zhì):三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線段AB=8cm,在直線AB上畫線BC,使它等于3cm,則線段AC等于( )
A.11cm
B.5cm
C.11cm或5cm
D.8cm或11cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用適當(dāng)?shù)姆椒ń夥匠蹋?/span>
(1)2x2﹣x﹣15=0
(2)(2x+1)2=3(2x+1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C為半圓內(nèi)一點(diǎn),O為圓心,直徑AB長(zhǎng)為4cm,∠BOC=60°,∠BCO=90°,將△BOC繞圓心O逆時(shí)針旋轉(zhuǎn)至△B′OC′,點(diǎn)C′在OA上,則邊BC掃過(guò)區(qū)域(圖中陰影部分)的面積為______cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次綜合實(shí)踐活動(dòng)中,小明要測(cè)某地一座古塔AE的高度.如圖,已知塔基頂端B(和A、E共線)與地面C處固定的繩索的長(zhǎng)BC為80m.她先測(cè)得∠BCA=35°,然后從C點(diǎn)沿AC方向走30m到達(dá)D點(diǎn),又測(cè)得塔頂E的仰角為50°,求塔高AE.(人的高度忽略不計(jì),結(jié)果用含非特殊角的三角函數(shù)表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABC中,AB=AC.
(1)試用直尺和圓規(guī)在AC上找一點(diǎn)D,使AD=BD(不寫作法,但需保留作圖痕跡).
(2)在(1)中,連接BD,若BD=BC,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CD是Rt△ABC斜邊AB上的高,將△BCD沿CD折疊,B點(diǎn)恰好落在AB的中點(diǎn)E處,則∠A等于______度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com