如圖,四邊形ABCD是正方形,延長BC至點E,使CE=CA,連接AE交CD于點F則∠AFC的度數(shù)是(     ).

A.150°            B.125°            C.135°            D.112.5°

 

【答案】

D

【解析】

試題分析:由三角形及正方形對角線相互垂直平分相等的性質(zhì)進行計算求解,把各角之間關(guān)系找到即可求解.

∵四邊形ABCD是正方形,CE=CA

∴∠ACE=45°+90°=135°,∠E=22.5°

∴∠AFC=90°+22.5°=112.5°.

故選D.

考點:正方形的性質(zhì),等腰三角形的性質(zhì),三角形的外角的性質(zhì)

點評:解題關(guān)鍵是熟練掌握三角形的外角的性質(zhì):三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和.

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設(shè)AC=2a,BD=2b,請推導這個四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案