已知∠AOB=30°,點(diǎn)P在∠AOB的內(nèi)部,P1與P關(guān)于0B對(duì)稱,P2與P關(guān)于OA對(duì)稱,則∠P1PP2的度數(shù)是( 。
分析:連接OP,根據(jù)軸對(duì)稱的性質(zhì)可得∠P1OA=∠AOP,∠P2OB=∠BOP,OP1=OP=OP2,然后由等腰三角形的性質(zhì)、三角形內(nèi)角和定理來(lái)求∠P1PP2的度數(shù).
解答:解:∵P1與P關(guān)于0B對(duì)稱,
∴OP=OP2,∠POB=∠P2OB,
∴∠OPP2=∠OP2P=
1
2
(180°-2∠POB);
同理,∠OPP1=∠OP1P=
1
2
(180°-2∠POA);
又∵∠AOP+∠BOP=∠AOB=30°,
∴∠OPP1+∠OPO2=∠P1PP2=∠
1
2
(360°-60°)=150°;
故選D.
點(diǎn)評(píng):此題考查了軸對(duì)稱的性質(zhì),對(duì)應(yīng)點(diǎn)的連線與對(duì)稱軸的位置關(guān)系是互相垂直,對(duì)應(yīng)點(diǎn)所連的線段被對(duì)稱軸垂直平分,對(duì)稱軸上的任何一點(diǎn)到兩個(gè)對(duì)應(yīng)點(diǎn)之間的距離相等,對(duì)應(yīng)的角、線段都相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知∠AOB=30°,點(diǎn)P在∠AOB的內(nèi)部,P′與P關(guān)于OA對(duì)稱,P″與P關(guān)于OB對(duì)稱,則△OP′P″一定是一個(gè)
等邊
等邊
三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知∠AOB=30°,點(diǎn)P在∠AOB內(nèi)部,P1與P關(guān)于OB對(duì)稱,P2與P關(guān)于OA對(duì)稱,則P1,O,P2三點(diǎn)構(gòu)成的三角形是
等邊
等邊
三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知∠AOB=30°,將∠AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°后得到∠EOF,則∠EOF=
30°
30°
.(填度數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,E,O,A三點(diǎn)共線,OB平分∠AOC,∠DOC=2∠EOD,已知∠AOB=30°,則∠EOD的度數(shù)為
40°
40°

查看答案和解析>>

同步練習(xí)冊(cè)答案