【題目】如圖,△OA1B1,△A1A2B2,△A2A3B3,是分別以A1,A2,A3,為直角頂點(diǎn),一條直角邊在x軸正半軸上的等腰直角三角形,其斜邊的中點(diǎn)C1x1,y1),C2x2,y2),C3x3,y3),均在反比例函數(shù)x0)的圖象上.則y1+y2+…+y8的值為(

A.B.6C.D.

【答案】C

【解析】

根據(jù)點(diǎn)C1的坐標(biāo),確定y1,可求反比例函數(shù)關(guān)系式,由點(diǎn)C1是等腰直角三角形的斜邊中點(diǎn),可以得到OA1的長,然后再設(shè)未知數(shù),表示點(diǎn)C2的坐標(biāo),確定y2,代入反比例函數(shù)的關(guān)系式,建立方程解出未知數(shù),表示點(diǎn)C3的坐標(biāo),確定y3,……然后再求和.

解:過C1C2、C3…分別作x軸的垂線,垂足分別為D1、D2、D3


其斜邊的中點(diǎn)C1在反比例函數(shù)y=,

C122),即y1=2,
OD1=D1A1=2
設(shè)A1D2=a,則C2D2=a 此時C24+a,a),代入y=,得:a4+a=4,
解得:,即:y2=
同理:y3=;
y4=;
……

;
y1+y2++y8=

=

=

=

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,三角形的內(nèi)心是三條角平分線的交點(diǎn),過三角形內(nèi)心的一條直線與兩邊相交,兩交點(diǎn)之間的線段把這個三角形分成兩個圖形.若有一個圖形與原三角形相似,則把這條線段叫做這個三角形的“內(nèi)似線”.

(1)等邊三角形“內(nèi)似線”的條數(shù)為   ;

(2)如圖,ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=AD,求證:BD是ABC的“內(nèi)似線”;

(3)在RtABC中,C=90°,AC=4,BC=3,E、F分別在邊AC、BC上,且EF是ABC的“內(nèi)似線”,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國式過馬路,是網(wǎng)友對部分中國人集體闖紅燈現(xiàn)象的一種調(diào)侃,即“湊夠一撮人就可以走了,和紅綠燈無關(guān)”針對這種現(xiàn)象某媒體記者在多個路口采訪闖紅燈的行人,得出形成這種現(xiàn)象的四個基本原因,①紅綠燈設(shè)置不科學(xué),交通管理混亂占1%;②僥幸心態(tài);③執(zhí)法力度不夠占9%;④從眾心理,該記者將這次調(diào)查情況整理并繪制了如下尚不完整的統(tǒng)計圖,請根據(jù)相關(guān)信息,解答下列問題.

(1)該記者本次一共調(diào)査了 名行人;

(2)求圖1中④所在扇形的圓心角,并補(bǔ)全圖2;

(3)在本次調(diào)查中,記者隨機(jī)采訪其中的一名行人,求他屬于第②種情況的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一幅長20cm、寬12cm的圖案,如圖,其中有一橫兩豎的彩條,橫、豎彩條的寬度比為3:2.設(shè)豎彩條的寬度為xcm,圖案中三條彩條所占面積為ycm2

(1)求y與x之間的函數(shù)關(guān)系式;

(2)若圖案中三條彩條所占面積是圖案面積的,求橫、豎彩條的寬度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A的坐標(biāo)是(4,0),并且OA=OC=4OB,動點(diǎn)P在過AB,C三點(diǎn)的拋物線上.

1)求拋物線的解析式;

2)在AC上方的拋物線上有一動點(diǎn)G,如圖,當(dāng)點(diǎn)G運(yùn)動到某位置時,以AG,AO為鄰邊的平行四邊形第四個頂點(diǎn)恰好也在拋物線上,求出此時點(diǎn)G的坐標(biāo);

3)若拋物線上存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形,直接寫出所有符合條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E為邊AD的中點(diǎn),點(diǎn)F在邊CD上,且∠BEF90°,延長EFBC的延長線于點(diǎn)G.

(1)求證:△ABE∽△EGB.

(2)AB4,求CG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,OFAB,交AC于點(diǎn)F,點(diǎn)EAB的延長線上,射線EM經(jīng)過點(diǎn)C,且∠ACE+AFO=180°.

(1)求證:EM是⊙O的切線;

(2)若∠A=E,BC=,求陰影部分的面積.(結(jié)果保留和根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司共有三個部門,根據(jù)每個部門的員工人數(shù)和相應(yīng)每人所創(chuàng)的年利潤繪制成如下的統(tǒng)計表和扇形圖.

各部門人數(shù)及每人所創(chuàng)年利潤統(tǒng)計表

部門

員工人數(shù)

每人所創(chuàng)的年利潤/萬元

A

5

10

B

8

C

5

(1)在扇形圖中,C部門所對應(yīng)的圓心角的度數(shù)為___________;

在統(tǒng)計表中,___________,___________;

(2)求這個公司平均每人所創(chuàng)年利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB5AD3,動點(diǎn)P滿足SPABS矩形ABCD,則點(diǎn)PAB兩點(diǎn)距離之和PA+PB的最小值為_____

查看答案和解析>>

同步練習(xí)冊答案