【題目】如圖,在正方形ABCD中,E為邊AD的中點(diǎn),點(diǎn)F在邊CD上,且∠BEF90°,延長EFBC的延長線于點(diǎn)G.

(1)求證:△ABE∽△EGB.

(2)AB4,求CG的長.

【答案】(1)證明見解析;(2)CG=6.

【解析】

(1)由正方形的性質(zhì)與已知得出∠A=∠BEG,證出∠ABE=∠G,即可得出結(jié)論;

(2)ABAD4,EAD的中點(diǎn),得出AEDE2,由勾股定理得出BE,由△ABE∽△EGB,得出,求得BG10,即可得出結(jié)果.

(1)證明:∵四邊形ABCD為正方形,且∠BEG90°,

∴∠A=∠BEG,

∵∠ABE+EBG90°,∠G+EBG90°,

∴∠ABE=∠G

∴△ABE∽△EGB;

(2)ABAD4EAD的中點(diǎn),

AEDE2,

RtABE中,BE

(1)知,△ABE∽△EGB

,即:

BG10,

CGBGBC1046.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=ax+b與反比例函數(shù),其中ab0,a、b為常數(shù),它們?cè)谕蛔鴺?biāo)系中的圖象可以是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的邊長為4,M,N分別是BC,CD上的兩個(gè)動(dòng)點(diǎn),當(dāng)M點(diǎn)在BC上運(yùn)動(dòng)時(shí),保持AMMN垂直.

(1)證明:△ABM∽△MCN;

(2)△ABM的周長與△MCN周長之比是4:3,求NC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售一種商品,每件的成本每千克18元,規(guī)定每千克售價(jià)不低于成本,且獲利不得高于100%,經(jīng)市場(chǎng)調(diào)查,每天的銷售量y(千克)與每千克售價(jià)x()滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:

售價(jià)x(/千克)

40

39

38

37

銷售量y(千克)

20

22

24

26

(1)yx之間的函數(shù)表達(dá)式;

(2)設(shè)商品每天的總利潤為W(),求Wx之間的函數(shù)表達(dá)式(利潤=收入﹣成本),并指出售價(jià)為多少元時(shí)獲得最大利潤,最大利潤是多少?

(3)該超市若想每天銷售利潤不低于480元,請(qǐng)結(jié)合函數(shù)圖象幫助超市確定產(chǎn)品的銷售單價(jià)范圍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠C90°,ACBC,將△ABC繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)60°到△ABC的位置,連接C'B

(1)求∠ABC'的度數(shù);

(2)C'B的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC的頂點(diǎn)A,BC的坐標(biāo)分別是A(﹣1,﹣1),B(﹣4,﹣1),C(﹣4,﹣3).

1)作出ABC關(guān)于原點(diǎn)O中心對(duì)稱的圖形A1B1C1,并寫出點(diǎn)B的對(duì)應(yīng)點(diǎn)B1的坐標(biāo);

2)作出A1B1C1繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后的圖形A2B2C2,并寫出點(diǎn)C1的對(duì)應(yīng)點(diǎn)C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,CE是DCB的角平分線,且交AB于點(diǎn)E,DB與CE相交于點(diǎn)O,

(1)求證:EBC是等腰三角形;

(2)已知:AB=7,BC=5,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一塊長5米寬4米的地毯,為了美觀設(shè)計(jì)了兩橫、兩縱的配色條紋(圖中陰影部分),已知配色條紋的寬度相同,所占面積是整個(gè)地毯面積的

(1)求配色條紋的寬度;

(2)如果地毯配色條紋部分每平方米造價(jià)200元,其余部分每平方米造價(jià)100元,求地毯的總造價(jià).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸交于兩點(diǎn),軸交于點(diǎn).點(diǎn)在函數(shù)圖象上,軸,且,直線是拋物線的對(duì)稱軸,是拋物線的頂點(diǎn).

(1)的值;

(2)如圖①,連接 線段上的點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)F'恰好在線段BE上,求點(diǎn)的坐標(biāo);

(3)如圖②,動(dòng)點(diǎn)在線段上,過點(diǎn)軸的垂線分別與交于點(diǎn),與拋物線交于點(diǎn).試問:直線右側(cè)的拋物線上是否存在點(diǎn),使得的面積相等,且線段的長度最小?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案