【題目】如圖,點A、B在雙曲線y=(x<0)上,連接OA、AB,以OA、AB為邊作□OABC.若點C恰落在雙曲線y=(x>0)上,此時□OABC的面積為__________.
【答案】
【解析】
如圖,過A點作AD⊥x軸于D,過C作CE⊥x軸于E,過B作BF⊥AD于F,設A(a,﹣),C(b,),根據(jù)△ABF≌△COE可得B(a+b,﹣),即(a+b)(﹣)=﹣3,設=m,則可化方程為3m﹣=2,求得=,,然后根據(jù)□OABC的面積=2×S△OAC=2(S梯形ADEC﹣S△AOD﹣S△COE)即可得解.
解:如圖,連接AC,過A點作AD⊥x軸于D,過C作CE⊥x軸于E,過B作BF⊥AD于F,
易證△ABF≌△COE,設A(a,﹣),C(b,),則OE=BF=b,CE=AF=,
∴B(a+b,﹣),
∵B點在在雙曲線y=(x<0)上,
∴(a+b)(﹣)=﹣3,
設=m,則可化方程為3m﹣=2,
解得m=,或m=(舍去),
∴=,,
∴S□OABC=2×S△OAC
=2(S梯形ADEC﹣S△AOD﹣S△COE)
=2[(﹣)(b﹣a)﹣×∣﹣3∣﹣×2]
=﹣+3+2﹣﹣5
=.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個結(jié)論:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正確結(jié)論的個數(shù)是( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】菱形ABCD中,∠B=60°,AB=4,點E在BC上,CE=2,若點P是菱形上異于點E的另一點,CE=CP,則EP的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某數(shù)學興趣小組在探究函數(shù)y=|x2-4x+3|的圖象和性質(zhì)時,經(jīng)歷以下幾個學習過程:
(1)列表(完成以下表格)
x | … | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | … |
y1=x2-4x+3 | … | 15 | 8 | 0 | 0 | 3 | 15 | … | |||
y=|x2-4x+3| | … | 15 | 8 | 0 | 0 | 3 | 15 | … |
(2)描點并畫出函數(shù)圖象草圖(在備用圖1中描點并畫圖)
(3)根據(jù)圖象完成以下問題
(ⅰ)觀察圖象
函數(shù)y=|x2-4x+3|的圖象可由函數(shù)y1=x2-4x+3的圖象如何變化得到?
答:______.
(ⅱ)數(shù)學小組探究發(fā)現(xiàn)直線y=8與函數(shù)y=|x2-4x+3|的圖象交于點E、F,E(-1,8),F(5,8),則不等式|x2-4x+3|>8的解集是______;
(ⅲ)設函數(shù)y=|x2-4x+3|的圖象與x軸交于A、B兩點(B位于A的右側(cè)),與y軸交于點C.
①求直線BC的解析式;
②探究應用:將直線BC沿y軸平移m個單位后與函數(shù)y=|x2-4x+3|的圖象恰好有3個交點,求此時m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知是的直徑,點在上,是的切線,于點,是延長線上一點,交于點,連接,.
(1)求證:平分;
(2)若,,
①求的度數(shù);
②若的半徑為2,求線段的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了估計某地區(qū)供暖期間空氣質(zhì)量情況,某同學在20天里做了如下記錄:
污染指數(shù)(ω) | 40 | 60 | 80 | 100 | 120 | 140 |
天數(shù)(天) | 3 | 2 | 3 | 4 | 5 | 3 |
其中ω<50時空氣質(zhì)量為優(yōu),50≤ω≤100時空氣質(zhì)量為良,100<ω≤150時空氣質(zhì)量為輕度污染.若按供暖期125天計算,請你估計該地區(qū)在供暖期間空氣質(zhì)量達到良以上(含良)的天數(shù)為( 。
A.75B.65C.85D.100
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一個口袋中裝有六個完全相同的小球,小球上分別標有1,2,5,7,8,13六個數(shù),攪勻后一次從中摸出一個小球,將小球上的數(shù)記為m,則使得一次函數(shù)y=(﹣m+1)x+11﹣m經(jīng)過一、二、四象限且關于x的分式方程=3x+的解為整數(shù)的概率是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com