精英家教網 > 初中數學 > 題目詳情

【題目】如圖,某工程隊從A點出發(fā),沿北偏西67°方向修一條公路AD,在BD路段出現塌陷區(qū),就改變方向,由B點沿北偏東23°的方向繼續(xù)修建BC段,到達C點又改變方向,從C點繼續(xù)修建CE段,∠ECB應為多少度,可使所修路段CEAB?試說明理由.此時CEBC有怎樣的位置關系?

以下是小剛不完整的解答,請幫他補充完整.

解:由已知平行,得∠1=∠A67°(兩直線平行,

∴∠CBD23°+67°= °,

當∠ECB+CBD °時,

可得CEAB.(

所以∠ECB °

此時CEBC.(

【答案】同位角相等;90;180;同旁內角互補,兩直線平行;90;垂直定義.

【解析】

根據平行線的性質推出∠1=∠A67°,求出∠DBC90°,根據平行線的判定得出當∠ECB+CBD180°時ABCE,再求出即可.

解:由已知平行,得∠1=∠A67°(兩直線平行,同位角相等),

∴∠CBD23°+67°=90°,

當∠ECB+CBD180°時,

可得CEAB.( 同旁內角互補,兩直線平行)

所以∠ECB90°,

此時CEBC(垂直定義),

故答案為:同位角相等;90;180;同旁內角互補,兩直線平行;90;垂直定義.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,一次函數圖象經過點A0,2),且與正比例函數y=﹣x的圖象交于點B,B點的橫坐標是﹣1

1)求該一次函數的解析式:

2)求一次函數圖象、正比例函數圖象與x軸圍成的三角形的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,網格中的每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.

△ACB和△DCE的頂點都在格點上,ED的延長線交AB于點F.

(1)求證:△ACB∽△DCE;(2)求證:EF⊥AB.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在正方形ABCD中,點E在邊CD上,AQ⊥BE于點Q,DP⊥AQ于點P.

(1)求證:AP=BQ;

(2)在不添加任何輔助線的情況下,請直接寫出圖中四對線段,使每對中較長線段與較短線段長度的差等于PQ的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(2016新疆)如圖,ABCD中,AB=2,AD=1,ADC=60°,將ABCD沿過點A的直線l折疊,使點D落到AB邊上的點D處,折痕交CD邊于點E

(1)求證:四邊形BCED是菱形;

(2)若點P時直線l上的一個動點,請計算PD′+PB的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖:E在△ABCAC邊的延長線上,D點在AB邊上,DEBC于點F,DF=EF,BD=CE.求證:△ABC是等腰三角形(過DDG∥ACBCG)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】李老師為了了解學生暑期在家的閱讀情況,隨機調查了20名學生某一天的閱讀小時數,具體情況統計如下:

閱讀時間

(小時)

2

2.5

3

3.5

4

學生人數(名)

1

2

8

6

3

則關于這20名學生閱讀小時數的說法正確的是( 。

A. 眾數是8 B. 中位數是3 C. 平均數是3 D. 方差是0.34

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,正三角形ABC的邊長為3+.

(1)如圖,正方形EFPN的頂點E,F在邊AB上,頂點N在邊AC上,在正三角形ABC及其內部,以點A為位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面積最大(不要求寫作法);

(2)求(1)中作出的正方形E′F′P′N′的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】學校準備購進一批節(jié)能燈,已知1A型節(jié)能燈和3B型節(jié)能燈共需26元;3A型節(jié)能燈和2B型節(jié)能燈共需29元.
(1)求一只A型節(jié)能燈和一只B型節(jié)能燈的售價各是多少元;
(2)學校準備購進這兩種型號的節(jié)能燈共50只,并且A型節(jié)能燈的數量不多于B型節(jié)能燈數量的3倍,設購進A型節(jié)能燈m只.
①請用含m的代數式表示總費用;
②請設計出最省錢的購買方案,并說明理由.

查看答案和解析>>

同步練習冊答案