(2010•鄂州)如圖,四邊形ABCD中,AB=AC=AD,E是CB的中點,AE=EC,∠BAC=3∠DBC,BD=6+6,則AB=   
【答案】分析:作輔助圓A,由已知證明△ABC為等腰直角三角形,△ACD為等邊三角形,作CF⊥BD,將△BCD分為兩個直角三角形,解直角三角形,列方程求解.
解答:解:法一:以點A為圓心,AB為半徑畫圓,作CF⊥BD,垂足為F,
∵AB=AC=AD,∴C、D兩點都在⊙A上,
∵E是CB的中點,AE=EC,由垂徑定理得,
AE=EC=BE,AE⊥BC,
∴∠BAC=90°,
∠BDC=∠BAC=45°,
又∵∠BAC=3∠DBC,
∴∠DBC=30°,
∠CAD=2∠DBC=60°,
△ACD為等邊三角形,
設AB=AC=CD=x,
在Rt△ABC中,BC=x,
在Rt△BCF中,∠FBC=30°,BF=BC=x,
同理,DF=x,
由DF+BF=BD,得x+x=6+6
解得x=12,即AB=12.

法二:作CF⊥BD,垂足為F,
∵AB=AC,E是CB的中點,AE=EC
∴AE=BE=EC,AE⊥BC,
∴∠BAE=∠ABE=45°,∠ACE=∠EAC=45°,
∴∠BAC=90°,
又∵∠BAC=3∠DBC,
∴∠DBC=30°,
∴∠ABD=∠ADB=15°,
∴∠BAD=150°,
∴∠CAD=60°,
△ACD為等邊三角形,
設AB=AC=CD=x,
在Rt△ABC中,BC=x,
在Rt△BCF中,∠FBC=30°,BF=BC=x,
同理,DF=x,
由DF+BF=BD,得x+x=6+6
解得x=12,即AB=12.
點評:本題主要考查了等腰三角形的性質,直角三角形的判定及圓的相關知識,解直角三角形,列方程求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2010•鄂州)如圖,在直角坐標系中,A(-1,0),B(0,2),一動點P沿過B點且垂直于AB的射線BM運動,P點的運動速度為每秒1個單位長度,射線BM與x軸交于點C.
(1)求點C的坐標.
(2)求過點A、B、C三點的拋物線的解析式.
(3)若P點開始運動時,Q點也同時從C點出發(fā),以P點相同的速度沿x軸負方向向點A運動,t秒后,以P、Q、C為頂點的三角形是等腰三角形.(點P到點C時停止運動,點Q也同時停止運動),求t的值.
(4)在(2)(3)的條件下,當CQ=CP時,求直線OP與拋物線的交點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省鄂州市中考數(shù)學試卷(解析版) 題型:解答題

(2010•鄂州)如圖,在直角坐標系中,A(-1,0),B(0,2),一動點P沿過B點且垂直于AB的射線BM運動,P點的運動速度為每秒1個單位長度,射線BM與x軸交于點C.
(1)求點C的坐標.
(2)求過點A、B、C三點的拋物線的解析式.
(3)若P點開始運動時,Q點也同時從C點出發(fā),以P點相同的速度沿x軸負方向向點A運動,t秒后,以P、Q、C為頂點的三角形是等腰三角形.(點P到點C時停止運動,點Q也同時停止運動),求t的值.
(4)在(2)(3)的條件下,當CQ=CP時,求直線OP與拋物線的交點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(07)(解析版) 題型:解答題

(2010•鄂州)如圖,一艘核潛艇在海面下500米A點處測得俯角為30°正前方的海底有黑匣子信號發(fā)出,繼續(xù)在同一深度直線航行4000米后再次在B點處測得俯角為60°正前方的海底有黑匣子信號發(fā)出,求海底黑匣子C點處距離海面的深度?(精確到米,參考數(shù)據(jù):≈1.414,≈1.732,≈2.236)

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(02)(解析版) 題型:填空題

(2010•鄂州)如圖,四邊形ABCD中,AB=AC=AD,E是CB的中點,AE=EC,∠BAC=3∠DBC,BD=6+6,則AB=   

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省鄂州市中考數(shù)學試卷(解析版) 題型:選擇題

(2010•鄂州)如圖,平面直角坐標系中,∠ABO=90°,將直角△AOB繞O點順時針旋轉,使點B落在x軸上的點B1處,點A落在A1處,若B點的坐標為(),則點A1的坐標是( )

A.(3,-4)
B.(4,-3)
C.(5,-3)
D.(3,-5)

查看答案和解析>>

同步練習冊答案