將一副三角板如圖擺放,若∠BAE=135°,則∠CAD的度數(shù)是______.
∵∠BAD=90°,∠CAE=90°,且∠BAE=∠BAD+∠CAE-∠CAD,
則∠CAD=∠BAD+∠CAE-∠BAE=90°+90°-∠BAE=180°-135°=45°.
故答案為:45°
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

把47.43°化成度、分、秒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,O是直線l上一點,∠AOB=100°,則∠1+∠2=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,OA⊥OB,∠1=∠2,∠3=∠4,則∠EOF=( 。
A.30°B.45°C.60°D.150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,∠AOC=50°,∠BOC=20°,OE平分∠BOC,OF平分∠AOC,求∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,∠AOB=90°,OC是∠AOB內(nèi)部的任意一條射線,OE平分∠AOC,OF平分∠BOC,小明根據(jù)上述條件很輕松地求得∠EOF=
1
2
∠AOB=45°.
小明是一個愛動腦筋的學(xué)生,他在解題后的反思過程中突發(fā)奇想:若OC是∠AOB外部的一條射線,OE平分∠AOC,OF平分∠BOC,則結(jié)論∠EOF=
1
2
∠AOB=45°是否仍成立呢?請你幫小明解答一下吧!

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,OA⊥OB,∠BOC=30°,OD平分∠AOC,則∠BOD=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

∠AOB是一個平角,OC是一條射線,OD、OE分別平分∠AOC、∠BOC,則∠DOE=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

下面是小亮解的一道題
題目:在同一平面上,若∠BOA=70°,∠BOC=25°,求∠AOC的度數(shù).
解:根據(jù)題意可畫出圖形:
∵∠AOC=∠BOA-∠BOC=70°-25°=45°,
∴∠AOC=45°
若你是老師,會判給小亮滿分嗎?若會,說明理由.若不會,請將小亮的錯誤之處,并給出你認為正確的答案.

查看答案和解析>>

同步練習(xí)冊答案