如圖:在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標(biāo)軸上,與兩坐標(biāo)軸交點為點A和點C,與拋物線交于點B,其中點A(0,2),點B(– 3,1),拋物線與y軸交點D(0,– 2).
(1) 求拋物線的解析式;
(2) 求點C的坐標(biāo);
(3) 在拋物線上是否還存在點P(點B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點P的坐標(biāo);若不存在,請說明理由.
解:(1) 將(–3,1),(0,–2)代入得:
∴ 拋物線的解析式為:
(2) 過B作BE⊥x軸于E,則E(–3,0),易證△BEC≌△COA
∴ BE = AO = 2 CO = 1
∴ C(–1,0)
(3) 延長BC到P,使CP = BC,連結(jié)AP,
則△ACP為以AC為直角邊的等腰直角三角形
過P作PF⊥x軸于F,易證△BEC≌△DFC
∴ CF = CE = 2 PF= BE = 1
∴ P(1,– 1)
將(1,– 1)代入拋物線的解析式滿足
若,AC = AP
則四邊形ABCP為平行四邊形
過P作PG⊥y軸于G,易證△PGA≌△CEB
∴ PG = 2 AG = 1
∴ P(2,1)在拋物線上
∴ 存在P(1,– 1),(2,1)滿足條件
科目:初中數(shù)學(xué) 來源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com