【題目】如圖,△ABC是一塊直角三角板,且∠C=90°,∠A=30°,現(xiàn)將圓心為點O的圓形紙片放置在三角板內(nèi)部.
(1)如圖①,當(dāng)圓形紙片與兩直角邊AC、BC都相切時,試用直尺與圓規(guī)作出射線CO;(不寫作法與證明,保留作圖痕跡)
(2)如圖②,將圓形紙片沿著三角板的內(nèi)部邊緣滾動1周,回到起點位置時停止,若BC=9,圓形紙片的半徑為2,求圓心O運動的路徑長.
【答案】(1)作圖見解析;(2).
【解析】
試題分析:(1)作∠ACB的平分線得出圓的一條弦,再作此弦的中垂線可得圓心O,作射線CO即可;
(2)添加如圖所示輔助線,圓心O的運動路徑長為,先求出△ABC的三邊長度,得出其周長,證四邊形OEDO1、四邊形O1O2HG、四邊形OO2IF均為矩形、四邊形OECF為正方形,得出∠OO1O2=60°=∠ABC、∠O1OO2=90°,從而知△OO1O2∽△CBA,利用相似三角形的性質(zhì)即可得出答案.
試題解析:(1)如圖①所示,射線OC即為所求;
(2)如圖2,圓心O的運動路徑長為,過點O1作O1D⊥BC、O1F⊥AC、O1G⊥AB,垂足分別為點D、F、G,過點O作OE⊥BC,垂足為點E,連接O2B,過點O2作O2H⊥AB,O2I⊥AC,垂足分別為點H、I,在Rt△ABC中,∠ACB=90°、∠A=30°,∴AC===,AB=2BC=18,∠ABC=60°,∴C△ABC=9++18=27+,∵O1D⊥BC、O1G⊥AB,∴D、G為切點,∴BD=BG,在Rt△O1BD和Rt△O1BG中,∵BD=BG,O1B=O1B,∴△O1BD≌△O1BG(HL),∴∠O1BG=∠O1BD=30°,在Rt△O1BD中,∠O1DB=90°,∠O1BD=30°,∴BD= ==,∴OO1=9﹣2﹣=7﹣,∵O1D=OE=2,O1D⊥BC,OE⊥BC,∴O1D∥OE,且O1D=OE,∴四邊形OEDO1為平行四邊形,∵∠OED=90°,∴四邊形OEDO1為矩形,同理四邊形O1O2HG、四邊形OO2IF、四邊形OECF為矩形,又OE=OF,∴四邊形OECF為正方形,∵∠O1GH=∠CDO1=90°,∠ABC=60°,∴∠GO1D=120°,又∵∠FO1D=∠O2O1G=90°,∴∠OO1O2=360°﹣90°﹣90°=60°=∠ABC,同理,∠O1OO2=90°,∴△OO1O2∽△CBA,∴,即,∴ =,即圓心O運動的路徑長為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=30°,∠C=50°,AE是∠BAC的平分線,AD是高.
(1)求∠BAE的度數(shù);
(2)求∠EAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y是x 的函數(shù),自變量x的取值范圍是x >0,下表是y與x 的幾組對應(yīng)值.
x | ··· | 1 | 2 | 3 | 5 | 7 | 9 | ··· |
y | ··· | 1.98 | 3.95 | 2.63 | 1.58 | 1.13 | 0.88 | ··· |
小騰根據(jù)學(xué)習(xí)一次函數(shù)的經(jīng)驗,利用上述表格所反映出的y與x之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進(jìn)行了探究.
下面是小騰的探究過程,請補充完整:
(1)如圖,在平面直角坐標(biāo)系 中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點.根據(jù)描出的點,畫出該函數(shù)的圖象;
(2)根據(jù)畫出的函數(shù)圖象,寫出:
①x=4對應(yīng)的函數(shù)值y約為;
②該函數(shù)的一條性質(zhì): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“大美濕地,水韻鹽城”.某校數(shù)學(xué)興趣小組就“最想去的鹽城市旅游景點”隨機(jī)調(diào)查了本校部分學(xué)生,要求每位同學(xué)選擇且只能選擇一個最想去的景點,下面是根據(jù)調(diào)查結(jié)果進(jìn)行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計圖:
請根據(jù)圖中提供的信息,解答下列問題:
(1)求被調(diào)查的學(xué)生總?cè)藬?shù);
(2)補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);
(3)若該校共有800名學(xué)生,請估計“最想去景點B“的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC的頂點分別為A(-4, 5),B(﹣3, 2),C(4,-1).
(1)作出△ABC關(guān)于x軸對稱的圖形△A1B1C1;
(2)寫出A1、B1、C1的坐標(biāo);
(3)若AC=10,求△ABC的AC邊上的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,雙曲線經(jīng)過□的頂點.點的坐標(biāo)為,點在軸上,且軸,.
(1)填空:點的坐標(biāo)為 ;
(2)求雙曲線和所在直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,AB的垂直平分線DE交AC于D,交AB于E,下述結(jié)論錯誤的是( )
A.BD平分∠ABC
B.
△BCD的周長等于AB+BC
C.AD=BD=BC
D.點D是線段AC的中點
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com