如圖,四邊形ABCD中,點E在邊CD上,連接AE、BE.給出下列五個關(guān)系式:①AD∥BC;②DE=CE;③∠1=∠2;④∠3=∠4;⑤AD+BC=AB.將其中的三個關(guān)系式作為題設(shè),另外兩個作為結(jié)論,構(gòu)成一個命題.
(1)用序號寫出一個真命題(書寫形式如:如果×××,那么××).并給出證明;
(2)用序號再寫出三個真命題(不要求證明);
(3)加分題:真命題不止以上四個,想一想,就能夠多寫出幾個真命題,每多寫出一個真命題就給你加1分,最多加2分.

【答案】分析:(1)如果①②③,那么④⑤,延長AE交BC的延長線于F,易得△ADE≌△FCE,可得到點E是AF的中點,故△ABF是等腰三角形,從而有:∠3=∠4,AD+BC=CF+BC=BF=AB;
(2)還結(jié)合如圖,證得如果①②④,那么③⑤,如果①③④,那么②⑤,如果①③⑤,那么②④.
解答:解:(1)如果①②③,那么④⑤
證明:如圖,延長AE交BC的延長線于F
∵AD∥BC,
∴∠1=∠F
又∵∠AED=∠CEF,DE=EC
∴△ADE≌△FCE
∴AD=CF,AE=EF
∵∠1=∠F,∠1=∠2,
∴∠2=∠F
∴AB=BF,
∴∠3=∠4,
∴AD+BC=CF+BC=BF=AB;
(說明:其他真命題的證明可參照上述過程相應給分)

(2)如果①②④,那么③⑤
如果①③④,那么②⑤
如果①③⑤,那么②④;

(3)若(1)(2)中四個命題含假命題(“如果②③④,那么①⑤”),則不加分,若(3)中含假命題,也不給分.
點評:本題考查與梯形有關(guān)的問題,在梯形中通常作輔助線來構(gòu)造三角形,轉(zhuǎn)移有關(guān)線段來求解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設(shè)AC=2a,BD=2b,請推導這個四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案