【題目】如圖,在半徑為6cm的⊙O中,點(diǎn)A是劣弧BC的中點(diǎn),點(diǎn)D是優(yōu)弧BC上一點(diǎn),且∠D=30°,下列四個(gè)結(jié)論:①OABC;BC=6cm;sinAOB=;④四邊形ABOC是菱形.其中正確結(jié)論的序號(hào)是( )

A. ①③ B. ①②③④ C. ②③④ D. ①③④

【答案】B

【解析】

試題解析:點(diǎn)A是劣弧的中點(diǎn),OA過圓心,

∴OA⊥BC,故正確;

∵∠D=30°

∴∠ABC=∠D=30°,

∴∠AOB=60°,

點(diǎn)A是劣弧的中點(diǎn),

∴BC=2CE,

∵OA=OB,

∴OA=OB=AB=6cm

∴BE=ABcos30°=6×=3cm,

∴BC=2BE=6cm,故正確;

∵∠AOB=60°,

∴sin∠AOB=sin60°=,

正確;

∵∠AOB=60°,

∴AB=OB

點(diǎn)A是劣弧的中點(diǎn),

∴AC=AB,

∴AB=BO=OC=CA

四邊形ABOC是菱形,

正確.

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,CD⊥AB,垂足為D,點(diǎn)EBC上,EF⊥AB,垂足為F.

1CDEF平行嗎?為什么?

2)如果∠1=∠2CD平分∠ACB,且∠3=120°,求∠ACB∠1的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠MON=30°,點(diǎn)A1,A2,A3,…在射線ON上,點(diǎn)B1,B2,B3,…在射線OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均為等邊三角形,若OA2=4,則△AnBnAn+1的邊長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)C是直線l1上一點(diǎn),在同一平面內(nèi),把一個(gè)等腰直角三角板ABC任意擺放,其中直角頂點(diǎn)C與點(diǎn)C重合,過點(diǎn)A作直線l2l1,垂足為點(diǎn)M,過點(diǎn)Bl3l1,垂足為點(diǎn)N

1)當(dāng)直線l2,l3位于點(diǎn)C的異側(cè)時(shí),如圖1,線段BN,AMMN之間的數(shù)量關(guān)系 (不必說明理由);

2)當(dāng)直線l2,l3位于點(diǎn)C的右側(cè)時(shí),如圖2,判斷線段BN,AMMN之間的數(shù)量關(guān)系,并說明理由;

3)當(dāng)直線l2,l3位于點(diǎn)C的左側(cè)時(shí),如圖3,請(qǐng)你補(bǔ)全圖形,并直接寫出線段BN,AMMN之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)EAC上(且不與點(diǎn)AC重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF

1)請(qǐng)直接寫出線段AF,AE的數(shù)量關(guān)系 ;

2)將△CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時(shí),如圖,連接AE,請(qǐng)判斷線段AFAE的數(shù)量關(guān)系,并證明你的結(jié)論;

3)在圖的基礎(chǔ)上,將△CED繞點(diǎn)C繼續(xù)逆時(shí)針旋轉(zhuǎn),請(qǐng)判斷(2)問中的結(jié)論是否發(fā)生變化?若不變,結(jié)合圖寫出證明過程;若變化,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)Ax軸上,坐標(biāo)為(0,3),點(diǎn)Bx軸上.

(1)在坐標(biāo)系中求作一點(diǎn)M,使得點(diǎn)M到點(diǎn)A,點(diǎn)B和原點(diǎn)O這三點(diǎn)的距離相等,在圖中保留作圖痕跡,不寫作法;

(2)若sinOAB=,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中每個(gè)小方格都是邊長(zhǎng)為1的正方形,四邊形ABCD的頂點(diǎn)與點(diǎn)E都是格點(diǎn).

1)作出四邊形ABCD關(guān)于直線AC對(duì)稱的四邊形AB′CD′

2)求四邊形ABCD的面積;

3)若在直線AC上有一點(diǎn)P,使得PDE的距離之和最小,請(qǐng)作出點(diǎn)P(請(qǐng)保留作圖痕跡),且求出PC=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BE、CF是△ABC的高且相交于點(diǎn)P,AQ∥BCCF延長(zhǎng)線于點(diǎn)Q,若有BP=AC,CQ=AB,線段APAQ的關(guān)系如何?說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛貨車從超市出發(fā),向東走了 3 千米到達(dá)小彬家,繼續(xù)走 2.5 米到達(dá)小穎家,然后向西走了 10 千米到達(dá)小明家,最后回 到超市.

1)小明家距小彬家多遠(yuǎn)?

2)貨車一共行駛了多少千米?

3)貨車每千米耗油 0.2 升,這次共耗油多少升?

查看答案和解析>>

同步練習(xí)冊(cè)答案