如圖,在平面直角坐標(biāo)系中,A、B均在邊長為1的正方形網(wǎng)格格點(diǎn)上.
(1)若點(diǎn)P在圖中所給網(wǎng)格中的格點(diǎn)上,△APB是等腰三角形,滿足條件的點(diǎn)P共有
4
4
個(gè).
(2)將線段AB沿x軸向右平移2格得線段CD,請(qǐng)你求出線段CD所在的直線函數(shù)解析式.
分析:(1)直接根據(jù)勾股定理描出符合條件的點(diǎn)即可;
(2)先根據(jù)A、B兩點(diǎn)的坐標(biāo)求出線段AB所在的直線解析式,再根據(jù)函數(shù)圖象平移的性質(zhì)進(jìn)行解答即可.
解答:(1)如圖所示,符合條件的點(diǎn)有4個(gè).
故答案為:4.
            
(2)設(shè)線段AB所在直線的解析式為y=kx+b,
∵A(1,0),B(0,2),
k+b=0
b=2
,解得
b=2
k=-2

∴線段AB所在直線的解析式為y=-2x+2,
把直線的解析式為y=-2x+2向右平移兩個(gè)單位所得直線解析式為:y=-2(x-2)+2即y=-2x+6,
故答案為:y=-2x+6.
點(diǎn)評(píng):本題考查的是一次函數(shù)的圖象及等腰三角形的性質(zhì)、勾股定理,熟知以上知識(shí)是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案