如圖,四邊形ABCD是正方形,已知A(5,4),B(10,4):
(1)求點C、D的坐標;
(2)若一次函數(shù)y=kx+3(k≠0)的圖象過C點,求k的值;
(3)在(2)的條件下,①若將直線l:y=kx+3向下平移a個單位,將正方形分為上下兩部分的面積比為7:3,試求出a的值;②若將直線l:y=kx+3平移后與以A為圓心,AC為半徑的圓相切,直接寫出平移后的直線的解析式.
(1)已知A(5,4),B(10,4),則AB=5,即正方形的邊長為5;
故C(10,9),D(5,9).

(2)將點C(10,9)代入直線l的解析式中,
得:10k+3=9,
即k=
3
5


(3)①設(shè)平移后的直線l′:y=
3
5
x+3-a(a>0);
1)當直線l′與線段AD、BC相交時,
設(shè)交點分別為M、N,則M(5,6-a),N(10,9-a);
故MA=2-a,NB=5-a;
由題意得:S梯形MABN=
1
2
(2-a+5-a)×5=25×
3
10
,
解得a=2;
2)當直線l′與線段AB、BC相交時,同1)可求得a=2;
綜上可知:a=2.
②設(shè)平移后的直線l″:y=
3
5
x+3+b,即
3
5
x-y+3+b=0;
易知AC=5
2
,A(5,4);
由題意得:
|
3
5
×5-4+3+b|
(
3
5
)
2
+1
=5
2
;
解得b=±2
17
-2;
故平移后的直線解析式為:y=
3
5
x+1-2
17
或y=
3
5
x+1+2
17
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線與y軸交于點A(0,4),與x軸交于B、C兩點.其中OB、OC是方程的x2-10x+16=0兩根,且OB<OC.
(1)求拋物線的解析式;
(2)直線AC上是否存在點D,使△BCD為直角三角形.若存在,求所有D點坐標;反之說理;
(3)點P為x軸上方的拋物線上的一個動點(A點除外),連PA、PC,若設(shè)△PAC的面積為S,P點橫坐標為t,則S在何范圍內(nèi)時,相應的點P有且只有1個.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(-4,0),B(-1,3),C(-3,3)
(1)求此二次函數(shù)的解析式;
(2)設(shè)此二次函數(shù)的對稱軸為直線l,該圖象上的點P(m,n)在第三象限,其關(guān)于直線l的對稱點為M,點M關(guān)于y軸的對稱點為N,若四邊形OAPN的面積為20,求m、n的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,直線y=kx+5與x軸交于點A,與y軸交于點B,與拋物線y=ax2+bx交于點C、D.已知點C的坐標為(1,7),點D的橫坐標為5.
(1)求直線與拋物線的解析式;
(2)將此拋物線沿對稱軸向下平移幾個單位,拋物線與直線AB只有一個交點?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,以A為頂點的拋物線與y軸交于點B、已知A、B兩點的坐標分別為(3,0)、(0,4).
(1)求拋物線的解析式;
(2)設(shè)M(m,n)是拋物線上的一點(m、n為正整數(shù)),且它位于對稱軸的右側(cè).若以M、B、O、A為頂點的四邊形四條邊的長度是四個連續(xù)的正整數(shù),求點M的坐標;
(3)在(2)的條件下,試問:對于拋物線對稱軸上的任意一點P,PA2+PB2+PM2>28是否總成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

某涵洞的截面是拋物線型,如圖所示,在圖中建立的直角坐標系中,拋物線的解析式為y=-
1
4
x2,當涵洞水面寬AB為12米時,水面到橋拱頂點O的距離為______米.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某工廠準備翻建新的廠門,廠門要求設(shè)計成軸對稱的拱型曲線.已知廠門的最大寬度AB=12m,最大高度OC=4m,工廠的特種運輸卡車的高度是3m,寬度是5.8m.現(xiàn)設(shè)計了兩種方案:方案一:建成拋物線形狀;方案二:建成圓弧形狀(如圖).為確保工廠的特種卡車在通過廠門時更安全,你認為應采用哪種設(shè)計方案?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

兩個直角邊為6的全等的等腰直角三角形Rt△AOB和Rt△CED,按如圖一所示的位置放置,點O與E重合.
(1)Rt△AOB固定不動,Rt△CED沿x軸以每秒2個單位長度的速度向右運動,當點E運動到與點B重合時停止,設(shè)運動x秒后,Rt△AOB和Rt△CED的重疊部分面積為y,求y與x之間的函數(shù)關(guān)系式;
(2)當Rt△CED以(1)中的速度和方向運動,運動時間x=2秒時,Rt△CED運動到如圖二所示的位置,若拋物線y=
1
4
x2+bx+c過點A,G,求拋物線的解析式;
(3)現(xiàn)有一動點P在(2)中的拋物線上運動,試問點P在運動過程中是否存在點P到x軸或y軸的距離為2的情況?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

改革開放后,不少農(nóng)村用上了自動噴灌設(shè)備.如圖所示,AB表示水管,在B處有一個自動旋轉(zhuǎn)的噴水頭,一瞬間噴出的水是拋物線狀,建立如圖所示的直角坐標系后,拋物線的表達式為y=-
1
2
x2+2x+
3
2

(1)當x=1時,噴出的水離地面多高?
(2)你能求出水的落地點距水管底部A的最遠距離嗎?
(3)水管有多高?

查看答案和解析>>

同步練習冊答案