綜合與探究:如圖,拋物線與x軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè))與y軸交于點(diǎn)C,連接BC,以BC為一邊,點(diǎn)O為對稱中心作菱形BDEC,點(diǎn)P是x軸上的一個動點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P作x軸的垂線l交拋物線于點(diǎn)Q。

(1)求點(diǎn)A,B,C的坐標(biāo)。

(2)當(dāng)點(diǎn)P在線段OB上運(yùn)動時(shí),直線l分別交BD,BC于點(diǎn)M,N。試探究m為何值時(shí),四邊形CQMD是平行四邊形,此時(shí),請判斷四邊形CQBM的形狀,并說明理由。

(3)當(dāng)點(diǎn)P在線段EB上運(yùn)動時(shí),是否存在點(diǎn) Q,使△BDQ為直角三角形,若存在,請直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由。

 

【答案】

解:(1)當(dāng)y=0時(shí),,解得,,

∵點(diǎn)B在點(diǎn)A的右側(cè),∴點(diǎn)A,B的坐標(biāo)分別為:(-2,0),(8,0)。

當(dāng)x=0時(shí),,∴點(diǎn)C的坐標(biāo)為(0,-4)。

(2)由菱形的對稱性可知,點(diǎn)D的坐標(biāo)為(0,4)。

設(shè)直線BD的解析式為,則,解得,。

∴直線BD的解析式為

l⊥x軸,∴點(diǎn)M,Q的坐標(biāo)分別是(m,),(m,

如圖,當(dāng)MQ=DC時(shí),四邊形CQMD是平行四邊形。

,化簡得:。

解得,m1=0,(舍去)m2=4。

當(dāng)m=4時(shí),四邊形CQMD是平行四邊形,此時(shí),四邊形CQBM也是平行四邊形。理由如下:

∵m=4,∴點(diǎn)P是OB中點(diǎn)。

∵l⊥x軸,∴l(xiāng)∥y軸。

∴△BPM∽△BOD!!郆M=DM。

∵四邊形CQMD是平行四邊形,∴DMCQ!郆MCQ。

∴四邊形CQBM為平行四邊形。

(3)拋物線上存在兩個這樣的點(diǎn)Q,分別是Q1(-2,0),Q2(6,-4)。

【解析】

試題分析:(1)根據(jù)坐標(biāo)軸上點(diǎn)的特點(diǎn),可求點(diǎn)A,B,C的坐標(biāo)。

(2)由菱形的對稱性可知,點(diǎn)D的坐標(biāo),根據(jù)待定系數(shù)法可求直線BD的解析式,根據(jù)平行四邊形的性質(zhì)可得關(guān)于m的方程,求得m的值;再根據(jù)平行四邊形的判定可得四邊形CQBM的形狀。

(3)分DQ⊥BD,BQ⊥BD兩種情況討論可求點(diǎn)Q的坐標(biāo):由B(8,0),D(0,4),Q(m,)應(yīng)用勾股定理求出三邊長,再由勾股定理分DQ⊥BD,BQ⊥BD兩種情況列式求出m即可。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•太原)綜合與探究:
如圖,拋物線y=
1
4
x2-
3
2
x-4與x軸交與A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),與y軸交于點(diǎn)C,連接BC,以BC為一邊,點(diǎn)O為對稱中心作菱形BDEC,點(diǎn)P是x軸上的一個動點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P作x軸的垂線l交拋物線于點(diǎn)Q.
(1)求點(diǎn)A,B,C的坐標(biāo).
(2)當(dāng)點(diǎn)P在線段OB上運(yùn)動時(shí),直線l分別交BD,BC于點(diǎn)M,N.試探究m為何值時(shí),四邊形CQMD是平行四邊形,此時(shí),請判斷四邊形CQBM的形狀,并說明理由.
(3)當(dāng)點(diǎn)P在線段EB上運(yùn)動時(shí),是否存在點(diǎn)Q,使△BDQ為直角三角形?若存在,請直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

綜合與探究:
如圖,拋物線y=數(shù)學(xué)公式x2-數(shù)學(xué)公式x-4與x軸交與A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),與y軸交于點(diǎn)C,連接BC,以BC為一邊,點(diǎn)O為對稱中心作菱形BDEC,點(diǎn)P是x軸上的一個動點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P作x軸的垂線l交拋物線于點(diǎn)Q.
(1)求點(diǎn)A,B,C的坐標(biāo).
(2)當(dāng)點(diǎn)P在線段OB上運(yùn)動時(shí),直線l分別交BD,BC于點(diǎn)M,N.試探究m為何值時(shí),四邊形CQMD是平行四邊形,此時(shí),請判斷四邊形CQBM的形狀,并說明理由.
(3)當(dāng)點(diǎn)P在線段EB上運(yùn)動時(shí),是否存在點(diǎn)Q,使△BDQ為直角三角形?若存在,請直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

綜合與探究:如圖,拋物線與x軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè))與y軸交于點(diǎn)C,連接BC,以BC為一邊,點(diǎn)O為對稱中心作菱形BDEC,點(diǎn)P是x軸上的一個動點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P作x軸的垂線l交拋物線于點(diǎn)Q

(1)求點(diǎn)A,B,C的坐標(biāo)。

(2)當(dāng)點(diǎn)P在線段OB上運(yùn)動時(shí),直線l分別交BD,BC于點(diǎn)M,N。試探究m為何值時(shí),四邊形CQMD是平行四邊形,此時(shí),請判斷四邊形CQBM的形狀,并說明理由。

(3)當(dāng)點(diǎn)P在線段EB上運(yùn)動時(shí),是否存在點(diǎn) Q,使△BDQ為直角三角形,若存在,請直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年山西省中考數(shù)學(xué)試卷(解析版) 題型:解答題

綜合與探究:
如圖,拋物線y=x2-x-4與x軸交與A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),與y軸交于點(diǎn)C,連接BC,以BC為一邊,點(diǎn)O為對稱中心作菱形BDEC,點(diǎn)P是x軸上的一個動點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P作x軸的垂線l交拋物線于點(diǎn)Q.
(1)求點(diǎn)A,B,C的坐標(biāo).
(2)當(dāng)點(diǎn)P在線段OB上運(yùn)動時(shí),直線l分別交BD,BC于點(diǎn)M,N.試探究m為何值時(shí),四邊形CQMD是平行四邊形,此時(shí),請判斷四邊形CQBM的形狀,并說明理由.
(3)當(dāng)點(diǎn)P在線段EB上運(yùn)動時(shí),是否存在點(diǎn)Q,使△BDQ為直角三角形?若存在,請直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案