(2013•太原)綜合與探究:
如圖,拋物線y=
1
4
x2-
3
2
x-4與x軸交與A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),與y軸交于點(diǎn)C,連接BC,以BC為一邊,點(diǎn)O為對(duì)稱中心作菱形BDEC,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P作x軸的垂線l交拋物線于點(diǎn)Q.
(1)求點(diǎn)A,B,C的坐標(biāo).
(2)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),直線l分別交BD,BC于點(diǎn)M,N.試探究m為何值時(shí),四邊形CQMD是平行四邊形,此時(shí),請(qǐng)判斷四邊形CQBM的形狀,并說明理由.
(3)當(dāng)點(diǎn)P在線段EB上運(yùn)動(dòng)時(shí),是否存在點(diǎn)Q,使△BDQ為直角三角形?若存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
分析:(1)根據(jù)坐標(biāo)軸上點(diǎn)的特點(diǎn),可求點(diǎn)A,B,C的坐標(biāo).
(2)由菱形的對(duì)稱性可知,點(diǎn)D的坐標(biāo),根據(jù)待定系數(shù)法可求直線BD的解析式,根據(jù)平行四邊形的性質(zhì)可得關(guān)于m的方程,求得m的值;再根據(jù)平行四邊形的判定可得四邊形CQBM的形狀;
(3)分DQ⊥BD,BQ⊥BD兩種情況討論可求點(diǎn)Q的坐標(biāo).
解答:解:(1)當(dāng)y=0時(shí),
1
4
x2-
3
2
x-4=0,解得x1=-2,x2=8,
∵點(diǎn)B在點(diǎn)A的右側(cè),
∴點(diǎn)A的坐標(biāo)為(-2,0),點(diǎn)B的坐標(biāo)為(8,0).
當(dāng)x=0時(shí),y=-4,
∴點(diǎn)C的坐標(biāo)為(0,-4).

(2)由菱形的對(duì)稱性可知,點(diǎn)D的坐標(biāo)為(0,4).
設(shè)直線BD的解析式為y=kx+b,則
b=4
8k+b=0

解得k=-
1
2
,b=4.
∴直線BD的解析式為y=-
1
2
x+4.
∵l⊥x軸,
∴點(diǎn)M的坐標(biāo)為(m,-
1
2
m+4),點(diǎn)Q的坐標(biāo)為(m,
1
4
m2-
3
2
m-4).
如圖,當(dāng)MQ=DC時(shí),四邊形CQMD是平行四邊形,
∴(-
1
2
m+4)-(
1
4
m2-
3
2
m-4)=4-(-4).
化簡得:m2-4m=0,
解得m1=0(不合題意舍去),m2=4.
∴當(dāng)m=4時(shí),四邊形CQMD是平行四邊形.
此時(shí),四邊形CQBM是平行四邊形.
解法一:∵m=4,
∴點(diǎn)P是OB的中點(diǎn).
∵l⊥x軸,
∴l(xiāng)∥y軸,
∴△BPM∽△BOD,
BP
BO
=
BM
BD
=
1
2
,
∴BM=DM,
∵四邊形CQMD是平行四邊形,
∴DM
.
CQ,
∴BM
.
CQ,
∴四邊形CQBM是平行四邊形.

解法二:設(shè)直線BC的解析式為y=k1x+b1,則
b1=-4
8k1+b1=0
,
解得k1=
1
2
,b1=-4.
故直線BC的解析式為y=
1
2
x-4.
又∵l⊥x軸交BC于點(diǎn)N,
∴x=4時(shí),y=-2,
∴點(diǎn)N的坐標(biāo)為(4,-2),
由上面可知,點(diǎn)M的坐標(biāo)為(4,2),點(diǎn)Q的坐標(biāo)為(4,-6).
∴MN=2-(-2)=4,NQ=-2-(-6)=4,
∴MN=QN,
又∵四邊形CQMD是平行四邊形,
∴DB∥CQ,
∴∠3=∠4,
∵在△BMN與△CQN中,
∠3=∠4
MN=QN
∠1=∠2
,
∴△BMN≌△CQN(ASA)
∴BN=CN,
∴四邊形CQBM是平行四邊形.

(3)拋物線上存在兩個(gè)這樣的點(diǎn)Q,分別是Q1(-2,0),Q2(6,-4).
若△BDQ為直角三角形,可能有三種情形,如答圖2所示:

①以點(diǎn)Q為直角頂點(diǎn).
此時(shí)以BD為直徑作圓,圓與拋物線的交點(diǎn),即為所求之Q點(diǎn).
∵P在線段EB上運(yùn)動(dòng),∴-8≤xQ≤8,而由圖形可見,在此范圍內(nèi),圓與拋物線并無交點(diǎn),
故此種情形不存在.
②以點(diǎn)D為直角頂點(diǎn).
連接AD,∵OA=2,OD=4,OB=8,AB=10,
由勾股定理得:AD=2
5
,BD=4
5
,
∵AD2+BD2=AB2,∴△ABD為直角三角形,即點(diǎn)A為所求的點(diǎn)Q.
∴Q1(-2,0);
③以點(diǎn)B為直角頂點(diǎn).
如圖,設(shè)Q2點(diǎn)坐標(biāo)為(x,y),過點(diǎn)Q2作Q2K⊥x軸于點(diǎn)K,則Q2K=-y,OK=x,BK=8-x.
易證△QKB∽△BOD,
Q2K
OB
=
BK
OD
,即
-y
8
=
8-x
4
,整理得:y=2x-16.
∵點(diǎn)Q在拋物線上,∴y=
1
4
x2-
3
2
x-4.
1
4
x2-
3
2
x-4=2x-16,解得x=6或x=8,
當(dāng)x=8時(shí),點(diǎn)Q2與點(diǎn)B重合,故舍去;
當(dāng)x=6時(shí),y=-4,
∴Q2(6,-4).
點(diǎn)評(píng):考查了二次函數(shù)綜合題,涉及的知識(shí)點(diǎn)有:坐標(biāo)軸上點(diǎn)的特點(diǎn),菱形的對(duì)稱性,待定系數(shù)法求直線的解析式,平行四邊形的判定和性質(zhì),方程思想和分類思想的運(yùn)用,綜合性較強(qiáng),有一定的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•太原)四川雅安發(fā)生地震后,某校九(1)班學(xué)生開展獻(xiàn)愛心活動(dòng),積極向?yàn)?zāi)區(qū)捐款.如圖是該班同學(xué)捐款的條形統(tǒng)計(jì)圖.寫出一條你從圖中所獲得的信息:
該班有50人參與了獻(xiàn)愛心活動(dòng)
該班有50人參與了獻(xiàn)愛心活動(dòng)

(只要與統(tǒng)計(jì)圖中所提供的信息相符即可得分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•太原)如圖是我省某地一座拋物線形拱橋,橋拱在豎直平面內(nèi),與水平橋面相交于A,B兩點(diǎn),拱橋最高點(diǎn)C到AB的距離為9m,AB=36m,D,E為拱橋底部的兩點(diǎn),且DE∥AB,點(diǎn)E到直線AB的距離為7m,則DE的長為
48
48
m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•太原)如圖,在△ABC中,AB=AC,D是BA延長線上的一點(diǎn),點(diǎn)E是AC的中點(diǎn).
(1)實(shí)踐與操作:利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)字母(保留作圖痕跡,不寫作法).
①作∠DAC的平分線AM. ②連接BE并延長交AM于點(diǎn)F.
(2)猜想與證明:試猜想AF與BC有怎樣的位置關(guān)系和數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•太原)如圖,AB為⊙O的直徑,點(diǎn)C在⊙O上,點(diǎn)P是直徑AB上的一點(diǎn)(不與A重合),過點(diǎn)P作AB的垂線交BC于點(diǎn)Q.
(1)在線段PQ上取一點(diǎn)D,使DQ=DC,連接DC,試判斷CD與⊙O的位置關(guān)系,并說明理由.
(2)若cosB=
35
,BP=6,AP=1,求QC的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案