【題目】某公園要建造一個(gè)圓形的噴水池,在水池中央垂直于水面豎一根柱子,上面的A處安裝一個(gè)噴頭向外噴水.連噴頭在內(nèi),柱高為1m.水流在各個(gè)方向上沿形狀相同的拋物線路徑落下,如圖(1)所示.
根據(jù)設(shè)計(jì)圖紙已知:在圖(2)中所示直角坐標(biāo)系中,水流噴出的高度y(m)與水平距離x(m)之間的函數(shù)關(guān)系式是.
(1)噴出的水流距水平面的最大高度是多少?
(2)如果不計(jì)其他因素,那么水池的半徑至少為多少時(shí),才能使噴出的水流都落在水池內(nèi)?
【答案】(1)最大高度是2米;(2)那么水池的半徑至少為時(shí),才能使噴出的水流都落在水池內(nèi).
【解析】
(1)本題是二次函數(shù)實(shí)際問(wèn)題的應(yīng)用,y表示水流噴出的高度,x表示水平距離,是二次函數(shù)關(guān)系,可以利用二次函數(shù)的性質(zhì)進(jìn)行求解.
(2)令y=0,求出B點(diǎn)的橫坐標(biāo),橫坐標(biāo)的大小就是水池最小半徑.
(1)
∴當(dāng)時(shí),
答:最大高度是2米;
(2)當(dāng)時(shí),,解得,
∴B(,0)
答:那么水池的半徑至少為時(shí),才能使噴出的水流都落在水池內(nèi).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)解方程: ;
(2)已知關(guān)于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分別為△ABC三邊的長(zhǎng).
①如果x=-1是方程的根,試判斷△ABC的形狀,并說(shuō)明理由;
②如果方程有兩個(gè)相等的實(shí)數(shù)根,試判斷△ABC的形狀,并說(shuō)明理由;
③如果△ABC是等邊三角形,試求這個(gè)一元二次方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形OABC的兩邊OA、OC分別在x軸、y軸上,點(diǎn)D(5,3)在邊AB上,以C為中心,把△CDB旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點(diǎn)D的對(duì)應(yīng)點(diǎn)D’的坐標(biāo)是( )
A.(2,10)B.(-2,0)C.(2,10)或(-2,0)D.(10,2)或(-5,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖:在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形OABC是矩形,點(diǎn)A、C的坐標(biāo)分別為、,點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC邊上運(yùn)動(dòng),當(dāng)是等腰三角形時(shí),點(diǎn)Р的坐標(biāo)為_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)P是半徑為5的⊙O內(nèi)點(diǎn),OP=3,在過(guò)點(diǎn)P的所有弦中,弦長(zhǎng)為整數(shù)的弦的條數(shù)為______條。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠BAD=∠DAC=9°,AD⊥AE,且AB+AC=BE,則∠B的大小是( )
A.42°B.44°C.46 °D.48°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD,
(1)求證:△BCE≌△DCF;
(2)若AB=15,AD=7,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知扇形中,,弦,點(diǎn)是弧上任意一點(diǎn)(與端點(diǎn)、不重合),于點(diǎn),以點(diǎn)為圓心、長(zhǎng)為半徑作,分別過(guò)點(diǎn)、作的切線,兩切線相交于點(diǎn).
求弧的長(zhǎng);
試判斷的大小是否隨點(diǎn)的運(yùn)動(dòng)而改變?若不變,請(qǐng)求出的大。蝗舾淖,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,AC的垂直平分線DE交AC于點(diǎn)D,交BC于點(diǎn)E,且∠BAE=90°,若DE=1,則BE=( 。
A.4B.3C.2D.無(wú)法確定
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com