【題目】如圖,已知矩形ABCD中,AB=2,BC=6,點(diǎn)E從點(diǎn)D出發(fā),沿DA方向以每秒1個單位的速度向點(diǎn)A運(yùn)動,點(diǎn)F從點(diǎn)B出發(fā),沿射線AB以每秒3個單位的速度運(yùn)動,當(dāng)點(diǎn)E運(yùn)動到點(diǎn)A時,E、F兩點(diǎn)停止運(yùn)動.連接BD,過點(diǎn)E作EH⊥BD,垂足為H,連接EF,交BD于點(diǎn)G,交BC于點(diǎn)M,連接CF. 給出下列結(jié)論:①△CDE∽△CBF;②∠DBC=∠EFC;③ ;④GH的值為定值;上述結(jié)論中正確的個數(shù)為( )
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】試題分析:作CN⊥BD,連接AC.
∵四邊形ABCD是矩形,AD∥BC,AB=DC,
∴∠CDA=∠DCB=∠DAB=∠ABC=90°,
設(shè)E點(diǎn)和F點(diǎn)的運(yùn)動時間為t,則CE=t,BF=3t,
∴, ,
∴,
在△CDE和△CBF中,
,
∴△CDE∽△CBF,故①正確,
∴∠DCE=∠BCF,
∵∠DCE+∠BCE=90°,
∴∠BCE+∠BCF=90°,
∴∠ECF=90°,
∵,
∴,
∵∠DCB=∠ECF,
∴△DCB∽△ECF,
∴∠DBC=∠EFC,故②正確;
∴∠CDB=∠CEF,
∵∠CDB+∠DCN=90°,∠DCN+∠NCB=90°,
∴∠DCB=∠NCB=∠CEF,
∵CN⊥BD,EH⊥DB,
∴CN∥EH,
∴∠NCE=∠CEH,
∴∠ECB=∠HEG,
∵AD∥BC,
∴∠DEC=∠ECB,
∴∠DEC=∠HEG,
∵∠EDC=∠EHG=90°,
∴△EDC∽△EHG,
∴,
∵AB=DC,
∴,故③錯誤;
∵AD=BC=6,AB=2,
∴BD==,
∵∠EDH=∠ADB,∠EHD=∠DAB,
∴△DEH∽△DBA,
∴,
∴,
∴EH=,
∵,
∴,
∴HG=,故④正確.
綜上所述①②④正確.
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,,,把一塊含角的三角板的直角頂點(diǎn)放在的中點(diǎn)上(直角三角板的短直角邊為,長直角邊為),點(diǎn)在上,點(diǎn)在上.
(1)求重疊部分的面積;
(2)如圖2,將直角三角板繞點(diǎn)按順時針方向旋轉(zhuǎn)30度,交于點(diǎn),交于點(diǎn).
①請說明:;
②在此條件下,與直角三角板重疊部分的面積會發(fā)生變化嗎?請說明理由,并求出重疊部分的面積.
(3)如圖3,將直角三角板繞點(diǎn)按順時針方向旋轉(zhuǎn)度(),交于點(diǎn),交于點(diǎn),則的結(jié)論仍成立嗎?重疊部分的面積會變嗎?(請直接寫出結(jié)論,不需要說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,點(diǎn)E、F分別在AB、CD上,且AE=CF.
(1)求證:△ADE≌△CBF;
(2)求證:四邊形DEBF為平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)的圖象經(jīng)過三個點(diǎn)A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>0.
(1)當(dāng)y1﹣y2=4時,求m的值;
(2)如圖,過點(diǎn)B、C分別作x軸、y軸的垂線,兩垂線相交于點(diǎn)D,點(diǎn)P在x軸上,若三角形PBD的面積是8,請寫出點(diǎn)P坐標(biāo)(不需要寫解答過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=x2+x﹣的圖象與x軸交于點(diǎn) A,B,交 y 軸于點(diǎn) C,拋物線的頂點(diǎn)為 D.
(1)求拋物線頂點(diǎn) D 的坐標(biāo)以及直線 AC 的函數(shù)表達(dá)式;
(2)點(diǎn) P 是拋物線上一點(diǎn),且點(diǎn)P在直線 AC 下方,點(diǎn) E 在拋物線對稱軸上,當(dāng)△BCE 的周長最小時,求△PCE 面積的最大值以及此時點(diǎn) P 的坐標(biāo);
(3)在(2)的條件下,過點(diǎn) P 且平行于 AC 的直線分別交x軸于點(diǎn) M,交 y 軸于點(diǎn)N,把拋物線y=x2+x﹣沿對稱軸上下平移,平移后拋物線的頂點(diǎn)為 D',在平移的過程中,是否存在點(diǎn) D',使得點(diǎn) D',M,N 三點(diǎn)構(gòu)成的三角形為直角三角形,若存在,直接寫出點(diǎn) D'的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在四邊形ABCD中,∠A=∠C=90°.
(1)∠ABC+∠ADC= °;
(2)如圖①,若DE平分∠ADC,BF平分∠ABC的外角,請寫出DE與BF的位置關(guān)系,并證明;
(3)如圖②,若BE,DE分別四等分∠ABC、∠ADC的外角(即∠CDE=∠CDN,∠CBE=∠CBM),試求∠E的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“宏揚(yáng)傳統(tǒng)文化,打造書香校園”活動中,學(xué)校計(jì)劃開展四項(xiàng)活動:“A﹣國學(xué)誦讀”、“B﹣演講”、“C﹣課本劇”、“D﹣書法”,要求每位同學(xué)必須且只能參加其中一項(xiàng)活動,學(xué)校為了了解學(xué)生的意愿,隨機(jī)調(diào)查了部分學(xué)生,結(jié)果統(tǒng)計(jì)如下:
(1)如圖,希望參加活動C占20%,希望參加活動B占15%,則被調(diào)查的總?cè)藬?shù)為 人,扇形統(tǒng)計(jì)圖中,希望參加活動D所占圓心角為 度,根據(jù)題中信息補(bǔ)全條形統(tǒng)計(jì)圖.
(2)學(xué),F(xiàn)有800名學(xué)生,請根據(jù)圖中信息,估算全校學(xué)生希望參加活動A有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按要求解下列各題:
(1)先化簡,再求值:5(a2b + 2ab2)- 2(3a2b + 4ab2-1),其中|a-2|+(b+ 3)2= 0:
(2)解方程:=1-.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解長沙市七年級學(xué)生身體素質(zhì),從全市七年級學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行了一次體育考試科目的測試(把測試結(jié)果分為四個等級:A級:優(yōu)秀;B級:良好;C級:及格;D級:不及格),并將測試記錄繪成如下兩幅完全不同的統(tǒng)計(jì)圖.請根據(jù)統(tǒng)計(jì)圖中的信息解答下列問題:
(1)本次抽樣測試的學(xué)生數(shù)是________;
(2)圖1中的度數(shù)是________;把圖2條形統(tǒng)計(jì)圖補(bǔ)充完成;
(3)長沙市某區(qū)七年級共有9800名學(xué)生,如果全部參加這次體育科目測試,請估計(jì)不及格的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com