如圖所示,四邊形ABCD是正方形,E為BF上一點(diǎn),四邊形AEFC恰是一個菱形,則∠EAB=________.

15°
分析:過E點(diǎn)作EH垂直AC,連接BD,交AC于O點(diǎn),由正方形的性質(zhì)可得,OB=AC,又可證四邊形BEHO是矩形,則EH=OB=AC=CF,故可知∠EAH=30°,進(jìn)而求出∠EAB的大小.
解答:證明:過E點(diǎn)作EH垂直AC交AC于H,連接BD,交AC于O點(diǎn),

在正方形ABCD中,AC⊥BD,AC=BD,OB=BD=AC,
又∵四邊形AEFC是菱形,
∴AC=CF,AC∥EF,
∵EH⊥AC,
∴∠BOH=∠OHE=∠OBE=90°,
∴四邊形BEHO是矩形,
∴EH=OB,
∴EH=AC=AE,
在直角三角形AHE中,
sin∠EAH==
故∠EAH=30°,即∠EAB=∠CAB-∠EAH=45°-30°=15°.
故答案為15°.
點(diǎn)評:此題主要考查了菱形,正方形的性質(zhì).菱形及正方形的一條對角線都平分一組對角,掌握此性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖所示,四邊形ABCD是平行四邊形,E,F(xiàn)分別在AD,CB的延長線上,且DE=BF,連接FE分別交AB,CD于點(diǎn)H,G.
(1)觀察圖中有
2
對全等三角形;
(2)聰明的你如果還有時間,請?jiān)谏蠄D中連接AF,CE,你將發(fā)現(xiàn)圖中出現(xiàn)了更多的全等三角形.請?jiān)谙旅娴臋M線上再寫出兩對與(1)不同的全等三角形(不用證明).1
△EDC≌△FBA
,2
△EAF≌△FCE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖所示,四邊形ABCD為⊙O的內(nèi)接四邊形,E為AB延長線的上一點(diǎn),∠CBE=40°,則∠AOC等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,四邊形ABCD中,E、F分別為AD、BC的中點(diǎn).
(1)當(dāng)AB∥CD而AD與BC不平行時,四邊形ABCD稱為
 
形,線段EF叫做其
 
,EF與AB+CD的數(shù)量關(guān)系為
 
;
(2)當(dāng)AB與CD不平行,AD與BC也不平行時,猜想EF與AB+CD的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,四邊形ABCD是正方形,E、F是AB、BC的中點(diǎn),連接EC交DB、DF于G、H,則EG:GH:HC=
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新課標(biāo) 讀想練同步測試 七年級數(shù)學(xué)(下) 北師大版 題型:044

如圖所示,四邊形AB-CD中,AB∥CD,P為BC上一點(diǎn),設(shè)∠CDP=α,∠CPD=β,試說明,無論點(diǎn)P在BC上如何移動,總有α+β=∠B.

查看答案和解析>>

同步練習(xí)冊答案