年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,點(diǎn)P是ABCD邊上一動(dòng)點(diǎn).沿A- D- C-B的路徑移動(dòng),設(shè)P點(diǎn)經(jīng)過的路徑長為x,△BAP的面積是Y, 則下列能大致反映,y與x的函數(shù)關(guān)系的圖象是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
木匠黃師傅用長AB=3,寬BC=2的矩形木板做一個(gè)盡可能大的圓形桌面,他設(shè)計(jì)了四種方案:
方案一:直接鋸一個(gè)半徑最大的圓;
方案二:圓心O1,O2分別在CD,AB上,半徑分別是O1C,O2A,鋸兩個(gè)外切的半圓拼成一個(gè)圓;
方案三:沿對(duì)角線AC將矩形鋸成兩個(gè)三角形,適當(dāng)平移三角形并鋸一個(gè)最大的圓;
方案四:鋸一塊小矩形BCEF拼接到矩形AEFD下面,并利用拼成的木板鋸一個(gè)盡可能大的圓。
(1)寫出方案一中的圓的半徑;
(2)通過計(jì)算說明方案二和方案三中,哪個(gè)圓的半徑較大?
(3)在方案四中,設(shè)CE=(),圓的半徑為,
①求關(guān)于的函數(shù)解析式;
②當(dāng)取何值時(shí)圓的半徑最大?最大半徑是多少?并說明四種方案中,哪一個(gè)圓形桌面的半徑最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
類比梯形的定義,我們定義:有一組對(duì)角相等而另一組對(duì)角不相等的凸四邊形叫做“等對(duì)角四邊形” .
(1)已知:如圖1,四邊形ABCD是“等對(duì)角四邊形”,∠A≠∠C,∠A=70°,
∠B=80°.求∠C,∠D的度數(shù).
(2)在探究“等對(duì)角四邊形”性質(zhì)時(shí):
①小紅畫了一個(gè)“等對(duì)角四邊形”ABCD(如圖2),其中∠ABC=∠ADC,AB=AD,此時(shí)她發(fā)現(xiàn)CB=CD成立.請(qǐng)你證明此結(jié)論;
②由此小紅猜想:“對(duì)于任意‘等對(duì)角四邊形’,當(dāng)一組鄰邊相等時(shí),另一組鄰邊也相等” .你認(rèn)為她的猜想正確嗎?若正確,請(qǐng)證明;若不正確,請(qǐng)舉出反例.
(3)已知:在“等對(duì)角四邊形”ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.
求對(duì)角線AC的長.
| |||
| |||
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
20位同學(xué)在植樹節(jié)這天共種了52棵樹苗,其中男生每人種3棵,女生每人種2棵,設(shè)男生有人,女生有人,根據(jù)題意,列方程組正確的是
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在矩形ABCD中,AD=8,E是邊AB上一點(diǎn),且AE=AB,⊙O經(jīng)過點(diǎn)E,與邊CD所在直線相切于點(diǎn)G(∠GEB為銳角),與邊AB所在直線相較于另一點(diǎn)F,且EG:EF=。當(dāng)邊AD或BC所在的直線與⊙O相切時(shí),AB的長是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
有19位同學(xué)參加歌詠比賽,成績互不相同,前10名的同學(xué)進(jìn)入決賽.某同學(xué)知道自己的分?jǐn)?shù)后,要判斷自己能否進(jìn)入決賽,他只需知道這19位同學(xué)成績的
A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖6,中,,.
(1)動(dòng)手操作:利用尺規(guī)作以為直徑的,并標(biāo)出與的交點(diǎn),與的交點(diǎn)
(保留作圖痕跡,不寫作法):
(2)綜合應(yīng)用:在你所作的圓中,
①求證:;
②求點(diǎn)到的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com