【題目】一個邊長為16m的正方形展廳,準備用邊長分別為1m和0.5m的兩種正方形地板磚鋪設其地面.要求正中心一塊是邊長為1m的大地板磚,然后從內到外一圈小地板磚、一圈大地板磚相間鑲嵌(如圖所示),則鋪好整個展廳地面共需要邊長為1m的大地板磚塊.

【答案】181
【解析】解:分層:正中心1塊,第三層1×3×4=12塊,第五層2×3×4=24塊,第七層3×3×4=36塊,
第九層4×3×4=48塊,第十一層5×3×4=60塊(此時邊長為16m),
則鋪好整個展廳地面共需要邊長為1m的大地板磚181塊.
所以答案是181.
【考點精析】根據(jù)題目的已知條件,利用平面圖形的鑲嵌的相關知識可以得到問題的答案,需要掌握用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做平面圖形的鑲嵌.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC是ABCD的對角線,∠BAC=∠DAC.

(1)求證:AB=BC;
(2)若AB=2,AC=2 ,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角坐標系中,ABC的頂點都在網(wǎng)格點上,其中,C點坐標為(1,2)

(1)寫出點A、B的坐標:

A(      )、B(      

(2)判斷ABC的形狀   .計算ABC的面積是   

(3)將ABC先向左平移2個單位長度,再向上平移1個單位長度,得到A′B′C′,A′B′C′的三個頂點坐標分別是A′(   ,   ),B′(   ,   ),C′(   ,   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為確保信息安全,在傳輸時往往需加密,發(fā)送方發(fā)出一組密碼a,b,c時,則接收方對應收到的密碼為AB,C.雙方約定:A=2a﹣b,B=2bC=b+c,例如發(fā)出12,3,則收到04,5

1)當發(fā)送方發(fā)出一組密碼為2,3,5時,則接收方收到的密碼是多少?

2)當接收方收到一組密碼28,11時,則發(fā)送方發(fā)出的密碼是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在△ABC中,AB=AC,BC=acm,∠B=30°.動點P以1cm/s的速度從點B出發(fā),沿折線B﹣A﹣C運動到點C時停止運動.設點P出發(fā)x s時,△PBC的面積為y cm2 . 已知y與x的函數(shù)圖象如圖②所示.請根據(jù)圖中信息,解答下列問題:
(1)試判斷△DOE的形狀,并說明理由;
(2)當a為何值時,△DOE與△ABC相似?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某通訊公司推出①、②兩種通訊收費方式供用戶選擇,其中一種有月租費,另一種無月租費,且兩種收費方式的通訊時間x(分鐘)與收費y(元)之間的函數(shù)關系如圖所示.
(1)有月租費的收費方式是(填①或②),月租費是元;
(2)分別求出①、②兩種收費方式中y與自變量x之間的函數(shù)關系式;
(3)請你根據(jù)用戶通訊時間的多少,給出經濟實惠的選擇建議.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】張經理到老王的果園里一次性采購一種水果,他倆商定:張經理的采購價y(元/噸)與采購量x(噸)之間函數(shù)關系的圖象如圖中的折線段ABC所示(不包含端點A,但包含端點C).
(1)求y與x之間的函數(shù)關系式;
(2)已知老王種植水果的成本是2 800元/噸,那么張經理的采購量為多少時,老王在這次買賣中所獲的利潤w最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列四個結論中,正確的是(
A.方程x+ =﹣2有兩個不相等的實數(shù)根
B.方程x+ =1有兩個不相等的實數(shù)根
C.方程x+ =2有兩個不相等的實數(shù)根
D.方程x+ =a(其中a為常數(shù),且|a|>2)有兩個不相等的實數(shù)根

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“低碳生活,綠色出行”,2017年1月,某公司向深圳市場新投放共享單車640輛.
(1)若1月份到4月份新投放單車數(shù)量的月平均增長率相同,3月份新投放共享單車1000輛.請問該公司4月份在深圳市新投放共享單車多少輛?
(2)考慮到自行車市場需求不斷增加,某商城準備用不超過70000元的資金再購進A,B兩種規(guī)格的自行車100輛,已知A型的進價為500元/輛,售價為700元/輛,B型車進價為1000元/輛,售價為1300元/輛。假設所進車輛全部售完,為了使利潤最大,該商城應如何進貨?

查看答案和解析>>

同步練習冊答案