【題目】如圖,直角坐標(biāo)系中,ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(1,2)

(1)寫出點(diǎn)A、B的坐標(biāo):

A(   ,   )、B(   ,   

(2)判斷ABC的形狀   .計(jì)算ABC的面積是   

(3)將ABC先向左平移2個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到A′B′C′,A′B′C′的三個(gè)頂點(diǎn)坐標(biāo)分別是A′(      ),B′(      ),C′(      

【答案】(1)A(2,﹣1),B(4,3);(2)5;(3)0;0;2;4;﹣1;3.

【解析】

(1)根據(jù)直角坐標(biāo)系的特點(diǎn)寫出對(duì)應(yīng)點(diǎn)的坐標(biāo);

(2)用ABC所在的矩形面積減去三個(gè)小三角形的面積即可求解;

(3)分別將點(diǎn)A、B、C先向左平移2個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到點(diǎn)A′、

B′、C′,然后順次連接并寫出坐標(biāo).

解:(1)A(2,﹣1),B(4,3);

(2)

AC=BC,AC2+BC2=AB2,

ABC的形狀是等腰直角三角形,

ABC的面積為5;

(3)所作圖形如圖所示:

A′(0,0)、B′(2,4)、C′(﹣1,3).

故答案為:(1)2,﹣1,4,3.(2)等腰直角三角形;5;(3)0;0;2;4;﹣1;3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,E為AD的中點(diǎn),若OE=3,則菱形ABCD的周長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,河的兩岸l1與l2相互平行,A、B是l1上的兩點(diǎn),C、D是l2上的兩點(diǎn),某人在點(diǎn)A處測(cè)得∠CAB=90°,∠DAB=30°,再沿AB方向前進(jìn)20米到達(dá)點(diǎn)E(點(diǎn)E在線段AB上),測(cè)得∠DEB=60°,求C、D兩點(diǎn)間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC 中,∠ACB=90°,∠A=30°,BC=2.將△ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)n度后得到△EDC,此時(shí)點(diǎn)D在AB邊上,斜邊DE交AC邊于點(diǎn)F,則n的大小和圖中陰影部分的面積分別為(
A.30,2
B.60,2
C.60,
D.60,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,銳角△ABC的兩條高BD、CE相交于點(diǎn)O,且OB=OC.
(1)求證:△ABC是等腰三角形;
(2)判斷點(diǎn)O是否在∠BAC的角平分線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為迎接建黨90周年,某校組織了以“黨在我心中”為主題的電子小報(bào)制作比賽,評(píng)分結(jié)果只有60,70,80,90,100五種.現(xiàn)從中隨機(jī)抽取部分作品,對(duì)其份數(shù)及成績(jī)進(jìn)行整理,制成如下兩幅不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息,解答下列問題:
(1)求本次抽取了多少份作品,并補(bǔ)全兩幅統(tǒng)計(jì)圖;
(2)已知該校收到參賽作品共900份,請(qǐng)估計(jì)該校學(xué)生比賽成績(jī)達(dá)到90分以上(含90分)的作品有多少份?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在學(xué)習(xí)了《展開與折疊》這一課后,明白了很多幾何體都能展開成平面圖形.于是他在家用剪刀展開了一個(gè)長(zhǎng)方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據(jù)你所學(xué)的知識(shí),回答下列問題:

(1)小明總共剪開了_______條棱.

(2)現(xiàn)在小明想將剪斷的②重新粘貼到①上去,而且經(jīng)過折疊以后,仍然可以還原成一個(gè)長(zhǎng)方體紙盒,你認(rèn)為他應(yīng)該將剪斷的紙條粘貼到①中的什么位置?請(qǐng)你幫助小明在①上補(bǔ)全.

(3)小明說:他所剪的所有棱中,最長(zhǎng)的一條棱是最短的一條棱的5倍.現(xiàn)在已知這個(gè)長(zhǎng)方體紙盒的底面是一個(gè)正方形,并且這個(gè)長(zhǎng)方體紙盒所有棱長(zhǎng)的和是880cm,求這個(gè)長(zhǎng)方體紙盒的體積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)邊長(zhǎng)為16m的正方形展廳,準(zhǔn)備用邊長(zhǎng)分別為1m和0.5m的兩種正方形地板磚鋪設(shè)其地面.要求正中心一塊是邊長(zhǎng)為1m的大地板磚,然后從內(nèi)到外一圈小地板磚、一圈大地板磚相間鑲嵌(如圖所示),則鋪好整個(gè)展廳地面共需要邊長(zhǎng)為1m的大地板磚塊.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】巳知二次函數(shù)y=a(x2﹣6x+8)(a>0)的圖象與x軸分別交于點(diǎn)A、B,與y軸交于點(diǎn)C.點(diǎn)D是拋物線的頂點(diǎn).
(1)如圖①.連接AC,將△OAC沿直線AC翻折,若點(diǎn)O的對(duì)應(yīng)點(diǎn)0'恰好落在該拋物線的 對(duì)稱軸上,求實(shí)數(shù)a的值;
(2)如圖②,在正方形EFGH中,點(diǎn)E、F的坐標(biāo)分別是(4,4)、(4,3),邊HG位于邊EF的 右側(cè).小林同學(xué)經(jīng)過探索后發(fā)現(xiàn)了一個(gè)正確的命題:“若點(diǎn)P是邊EH或邊HG上的任意一點(diǎn),則四條線段PA、PB、PC、PD不能與任何一個(gè)平行四邊形的四條邊對(duì)應(yīng)相等 (即這四條線段不能構(gòu)成平行四邊形).“若點(diǎn)P是邊EF或邊FG上的任意一點(diǎn),剛才的結(jié)論是否也成立?請(qǐng)你積極探索,并寫出探索過程;
(3)如圖②,當(dāng)點(diǎn)P在拋物線對(duì)稱軸上時(shí),設(shè)點(diǎn)P的縱坐標(biāo)t是大于3的常數(shù),試問:是否存在一個(gè)正數(shù)a,使得四條線段PA、PB、PC、PD與一個(gè)平行四邊形的四條邊對(duì)應(yīng)相等 (即這四條線段能構(gòu)成平行四邊形)?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案