【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,動點M從點B出發(fā),在BA邊上以每秒2cm的速度向點A勻速運動,同時動點N從點C出發(fā),在CB邊上以每秒cm的速度向點B勻速運動,設運動時間為t秒(0≤t≤5),連接MN.
(1)若BM=BN,求t的值;
(2)若△MBN與△ABC相似,求t的值;
(3)當t為何值時,四邊形ACNM的面積最。坎⑶蟪鲎钚≈担
【答案】(1);(2)t=或t=;(3)當t=時,y的值最小.=.
【解析】
試題分析:(1)∵在Rt△ABC中,∠ACB=90°,AC=5,∠BAC=60°,∴∠B=30°,∴AB=2AC=10,BC=.
由題意知:BM=2t,CN=,∴BN=,∵BM=BN,∴,解得:t==.
(2)分兩種情況:①當△MBN∽△ABC時,則,即,解得:t=.
②當△NBM∽△ABC時,則,即,解得:t=.
綜上所述:當t=或t=時,△MBN與△ABC相似.
(3)過M作MD⊥BC于點D,則MD∥AC,∴△BMD∽△BAC,∴,即,解得:MD=t.
設四邊形ACNM的面積為y,∴y==,∴根據(jù)二次函數(shù)的性質(zhì)可知,當t=時,y的值最小.此時,=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,以BC為直徑的圓交AC于點D,∠ABD=∠ACB.
(1)求證:AB是圓的切線;
(2)若點E是BC上一點,已知BE=4,tan∠AEB=,AB:BC=2:3,求圓的直徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線(m>0)與x軸的交點為A,B.
(1)求拋物線的頂點坐標;
(2)橫、縱坐標都是整數(shù)的點叫做整點.
①當m=1時,求線段AB上整點的個數(shù);
②若拋物線在點A,B之間的部分與線段AB所圍成的區(qū)域內(nèi)(包括邊界)恰有6個整點,結(jié)合函數(shù)的圖象,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c中,函數(shù)y與自變量x的部分對應值如表,則方程ax2+bx+c=0的一個解的范圍是( )
x | 6.17 | 6.18 | 6.19 | 6.20 |
y | ﹣0.03 | ﹣0.01 | 0.02 | 0.04 |
A.﹣0.01<x<0.02
B.6.17<x<6.18
C.6.18<x<6.19
D.6.19<x<6.20
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,半徑OA⊥OB,過點OA的中點C作FD∥OB交⊙O于D、F兩點,且CD=,以O為圓心,OC為半徑作,交OB于E點.
(1)求⊙O的半徑OA的長;
(2)計算陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com