精英家教網 > 初中數學 > 題目詳情

【題目】如圖,AB⊙O的直徑,點C⊙O 上,點P是直徑AB上的一點,(不與A,B重合),過點PAB的垂線交BC的延長線于點Q.

(1)點D在線段PQ上,且DQ=DC.求證:CD⊙O的切線;

(2)若sin∠Q= ,BP=6,AP=2,求QC的長.

【答案】(1)見解析;(2)

【解析】試題分析:

(1)連接OC,由DC=DQ可得∠Q=∠DCQ,OC=OB可得∠OCB=∠OBC,由PQ⊥AB于點P可得∠QPB=90°,從而可得∠Q+∠OBC=90°,即可得到∠DCQ+∠OCB=90°,從而可得∠OCD=90°,即可由此得到CD⊙O的切線;

(2)由BP=6,∠QPB=90°,sin∠Q=易得BQ=10,由BP=6,AP=2易得AB=8,連接AC,易證△ABC∽△QBP,由相似三角形對應邊成比例即可求得BC的長,再由BQ-BC即可求得QC的長了.

試題解析:

1)如圖,連結OC.

∵DQ=DC,

∴∠Q=∠QCD.

∵OC=OB,

∴∠B=∠OCB.

∵QP⊥BP,

∴∠QPB=90° ∠B+∠Q=90°,

∴∠QCD+∠OCB=90°,

∴∠OCD=90°,

∴CD⊥OC,即CD⊙O的切線;

(2)如圖,連結AC,

∵BP=6,AP=2,

∴AB=8,

∵在Rt△BQP中,sinQ=,

∴BQ=10,

連接AC,

∵AB是是⊙O的直徑,

∴∠ACB=∠QPB=90°,

∵∠B=∠B,

∴△ABC∽△QBP,

,,

∴BC=,

∴CQ=BQ-BC=.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知:ab為有理數,下列說法: a、b互為相反數,則;;,則;,則是正數.其中正確的有

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,EABCD的邊CD的中點,延長AEBC的延長線于點F.

(1)求證:ADE≌△FCE.

(2)若∠BAF=90°,BC=5,EF=3,求CD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在黃州服裝批發(fā)市場,某種品牌的時裝當季節(jié)將來臨時,價格呈上升趨勢,設這種時裝開始時定價為20元,并且每周(7天)漲價2元,從第6周開始保持30元的價格平穩(wěn)銷售;從第12周開始,當季節(jié)即將過去時,平均每周減價2元,直到第16周周末,該服裝不再銷售.

(1)試建立銷售價y與周次x之間的函數關系式;

(2)若這種時裝每件進價Z與周次x次之間的關系為Z=﹣0.125(x﹣8)2+12,1≤x≤16,且x為整數,試問該服裝第幾周出售時,每件銷售利潤最大?最大利潤為多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】認真閱讀下面的材料,完成有關問題:

材料:在學習絕對值時,我們已了解絕對值的幾何意義,如|5-3|表示5、3在數軸上對應的兩點之間的距離;又如|5+3|=|5--3|,所以|5+3|表示5-3在數軸上對應的兩點之間的距離。因此,一般地,點A,B在數軸上分別表示有理數a,b,那么A,B之間的距離(也就是線段AB的長度)可表示為|a-b|。

因此我們可以用絕對值的幾何意義按如下方法求的最小值;

即數軸上x1對應的點之間的距離,即數軸上x2對應的點之間的距離,把這兩個距離在同一個數軸上表示出來,然后把距離相加即可得原式的值.

A、B、P三點對應的數分別是1、2x.

1x2時,即P點在線段AB上,此時;

x2時,即P點在B點右側,此時 PAPBAB2PBAB

x 1時,即P點在A點左側,此時PAPBAB2PAAB

綜上可知,當1x2時(P點在線段AB上),取得最小值為1

請你用上面的思考方法結合數軸完成以下問題:

1)滿足x的取值范圍是 。

2)求的最小值為 ,最大值為 。

備用圖:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知AB、C是數軸上的三點,點C表示的數是6,點B與點C之間的距離是4,點B與點A的距離是12,點P為數軸上一動點.

1)數軸上點A表示的數為   .點B表示的數為   

2)數軸上是否存在一點P,使點P到點A、點B的距離和為16,若存在,請求出此時點P所表示的數;若不存在,請說明理由;

3)點P以每秒1個單位長度的速度從C點向左運動,點Q以每秒2個單位長度從點B出發(fā)向左運動,點R從點A以每秒5個單位長度的速度向右運動,它們同時出發(fā),運動的時間為t秒,請求點P與點Q,點R的距離相等時t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】列方程或方程組解應用題:

為了響應學校提出的節(jié)能減排,低碳生活的倡議,班會課上小李建議每位同學都踐行雙面打印,節(jié)約用紙.他舉了一個實際例子:打印一份資料,如果用A4厚型紙單面打印,總質量為400克,將其全部改成雙面打印,用紙將減少一半;如果用A4薄型紙雙面打印,總質量為160.已知每頁薄型紙比厚型紙輕0.8克,求例子中的A4厚型紙每頁的質量.(墨的質量忽略不計)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC是邊長為6的等邊三角形,點D、E分別是邊AB、AC的中點,將ADE繞點A旋轉,BDCE所在的直線交于點F

(1)如圖(2)所示,將ADE繞點A逆時針旋轉,且旋轉角不大于60°,∠CFB的度數是多少?說明你的理由?

(2)ADE繞點A旋轉時,若BCF為直角三角形,求出線段BF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC是一張銳角三角形的硬紙片.AD是邊BC上的高,BC=40cm,AD=30cm.從這張硬紙片剪下一個長HG是寬HE2倍的矩形EFGH.使它的一邊EFBC上,頂點G,H分別在AC,AB上.ADHG的交點為M.

1)求證: ;

(2)求這個矩形EFGH的周長.

查看答案和解析>>

同步練習冊答案