如圖,△ABC中,AD平分∠BAC,EF垂直平分AD,且交AB于E,交AC于F,試判斷四邊形AEDF的形狀?并說明理由.

解:四邊形AEDF是菱形.
理由:∵EF垂直平分AD,
∴AE=DE,AF=DF,
∴∠EAD=∠EDA,∠FAD=∠FDA,
∵AD平分∠BAC,
∴∠EAD=∠FAD,
∴∠ADE=∠ADF,
∵在△ADE和△AFD中,
,
∴△ADE≌△AFD(ASA),
∴AE=AF,
∴AE=DE=DF=AF,
∴四邊形AEDF是菱形.
分析:由EF垂直平分AD,根據(jù)線段垂直平分線的性質(zhì)可得AE=DE,AF=DF,又由AD平分∠BAC,易證得△ADE≌△AFD,則可得AE=AF,即可得AE=DE=DF=AF,則可判定四邊形AEDF是菱形.
點評:此題考查了菱形的判定、線段垂直平分線的性質(zhì)以及全等三角形的判定與性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案