(1)問(wèn)題探究

如圖1,分別以△ABC的邊AC與邊BC為邊,向△ABC外作正方形ACD1E1正方形BCD2E2,過(guò)點(diǎn)C作直線(xiàn)KH交直線(xiàn)AB于點(diǎn)H,使∠AHK=∠ACD1D1MKH,D2NKH,垂足分別為點(diǎn)M,N.試探究線(xiàn)段D1M與線(xiàn)段D2N的數(shù)量關(guān)系,并加以證明.

(2)拓展延伸

①如圖2,若將“問(wèn)題探究”中的正方形改為正三角形,過(guò)點(diǎn)C作直線(xiàn)K1H1K2H2,分別交直線(xiàn)AB于點(diǎn)H1,H2,使∠AH1K1=∠BH2K2=∠ACD1.作D1MK1H1,D2NK2H2,垂足分別為點(diǎn)M,N.D1M=D2N是否仍成立?若成立,給出證明;若不成立,說(shuō)明理由.

②如圖3,若將①中的“正三角形”改為“正五邊形”,其他條件不變.D1M=D2N是否仍成立?(要求:在圖3中補(bǔ)全圖形,注明字母,直接寫(xiě)出結(jié)論,不需證明)

圖1                    圖2                       圖3

(第25題圖)

解:(1)D1M=D2N.……………………………………………………………………1分

證明:∵∠ACD1=90°,

∴∠ACH+∠D1CK=90°

∵∠AHK=∠ACD1=90°,

∴∠ACH+∠HAC=90°

∴∠D1CK=∠HAC………………………………………………………………………2分

AC=CD1,

∴△ACH≌△CD1M

∴D1M=CH.………………………………………………………………………………3分

同理可證D2N=CH

D1M=D2N.……………………………………………………………………………4分

(2)①證明:D1M=D2N成立.………………………………………………………5分

過(guò)點(diǎn)CCGAB,垂足為點(diǎn)G.

∵∠H1AC+∠ACH1+∠AH1C=180°,

D1CM+∠ACH1+∠ACD1=180°,

AH1C=∠ACD1,

∴∠H1AC=∠D1CM.……………………………………………………………………6分

AC=CD1,∠AGC=∠CMD1=90°,

∴△ACG≌△CD1M.

CG=D1M.………………………………………………………………………………7分

同理可證CG=D2N.

D1M=D2N.……………………………………………………………………………8分

②作圖正確.……………………………………………………………………………9分

D1M=D2N還成立.……………………………………………………………………10分

圖1                    圖2                        圖3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、情境觀(guān)察
將矩形ABCD紙片沿對(duì)角線(xiàn)AC剪開(kāi),得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點(diǎn)A′與點(diǎn)A重合,并繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn),使點(diǎn)D、A(A′)、B在同一條直線(xiàn)上,如圖2所示.
觀(guān)察圖2可知:與BC相等的線(xiàn)段是
AD
,∠CAC′=
90
°.

問(wèn)題探究
如圖3,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過(guò)點(diǎn)E、F作射線(xiàn)GA的垂線(xiàn),垂足分別為P、Q.試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

拓展延伸
如圖4,△ABC中,AG⊥BC于點(diǎn)G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線(xiàn)GA交EF于點(diǎn)H.若AB=kAE,AC=kAF,試探究HE與HF之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•煙臺(tái))(1)問(wèn)題探究
如圖1,分別以△ABC的邊AC與邊BC為邊,向△ABC外作正方形ACD1E1和正方形BCD2E2,過(guò)點(diǎn)C作直線(xiàn)KH交直線(xiàn)AB于點(diǎn)H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分別為點(diǎn)M,N.試探究線(xiàn)段D1M與線(xiàn)段D2N的數(shù)量關(guān)系,并加以證明.
(2)拓展延伸
①如圖2,若將“問(wèn)題探究”中的正方形改為正三角形,過(guò)點(diǎn)C作直線(xiàn)K1H1,K2H2,分別交直線(xiàn)AB于點(diǎn)H1,H2,使∠AH1K1=∠BH2K2=∠ACD1.作D1M⊥K1H1,D2N⊥K2H2,垂足分別為點(diǎn)M,N.D1M=D2N是否仍成立?若成立,給出證明;若不成立,說(shuō)明理由.
②如圖3,若將①中的“正三角形”改為“正五邊形”,其他條件不變.D1M=D2N是否仍成立?(要求:在圖3中補(bǔ)全圖形,注明字母,直接寫(xiě)出結(jié)論,不需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

情境觀(guān)察
將矩形ABCD紙片沿對(duì)角線(xiàn)AC剪開(kāi),得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點(diǎn)A′與點(diǎn)A重合,并繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn),使點(diǎn)D、A(A′)、B在同一條直線(xiàn)上,如圖2所示.
觀(guān)察圖2可知:與BC相等的線(xiàn)段是
AD或A′D
AD或A′D
,∠CAC′=
90
90
°.

問(wèn)題探究
如圖3,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過(guò)點(diǎn)E、F作射線(xiàn)GA的垂線(xiàn),垂足分別為P、Q.試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年初中畢業(yè)升學(xué)考試(山東煙臺(tái)卷)數(shù)學(xué)(帶解析) 題型:解答題

(1)問(wèn)題探究
如圖1,分別以△ABC的邊AC與邊BC為邊,向△ABC外作正方形ACD1E1和正方形BCD2E2,過(guò)點(diǎn)C
作直線(xiàn)KH交直線(xiàn)AB于點(diǎn)H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分別為點(diǎn)M,N.試探究線(xiàn)段D1M與線(xiàn)段D2N的數(shù)量關(guān)系,并加以證明.
(2)拓展延伸
①如圖2,若將“問(wèn)題探究”中的正方形改為正三角形,過(guò)點(diǎn)C作直線(xiàn)K1H1,K2H2,分別交直線(xiàn)AB于點(diǎn)H1,H2,使∠AH1K1=∠BH2K2=∠ACD1.作D1M⊥K1H1,D2N⊥K2H2,垂足分別為點(diǎn)M,N.D1M=D2N是否仍成立?若成立,給出證明;若不成立,說(shuō)明理由.
②如圖3,若將①中的“正三角形”改為“正五邊形”,其他條件不變.D1M=D2N是否仍成立?(要求:在
圖3中補(bǔ)全圖形,注明字母,直接寫(xiě)出結(jié)論,不需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中數(shù)學(xué)單元提優(yōu)測(cè)試卷-相似的判定解答題(帶解析) 題型:解答題

情境觀(guān)察將矩形ABCD紙片沿對(duì)角線(xiàn)AC剪開(kāi),得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點(diǎn)A′與點(diǎn)A重合,并繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn),使點(diǎn)D、A(A′)、B在同一條直線(xiàn)上,如圖2所示.
觀(guān)察圖2可知:與BC相等的線(xiàn)段是 _________ ,∠CAC′= _________ °.

問(wèn)題探究
如圖3,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過(guò)點(diǎn)E、F作射線(xiàn)GA的垂線(xiàn),垂足分別為P、Q.試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

拓展延伸
如圖4,△ABC中,AG⊥BC于點(diǎn)G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線(xiàn)GA交EF于點(diǎn)H.若AB=kAE,AC=kAF,試探究HE與HF之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案