【題目】如圖,是圓的直徑,弦于,,,則弦的長(zhǎng)為( )
A. B. C. D.
【答案】C
【解析】
連接OC,由直徑AB垂直于弦CD,利用垂徑定理得到P為CD的中點(diǎn),由CD的長(zhǎng)求出CP的長(zhǎng),在直角三角形OCP中,由OP與PC的長(zhǎng),利用勾股定理求出OC的長(zhǎng),即為OA的長(zhǎng),由AO+OP求出AP的長(zhǎng),在直角三角形ACP中,由AP與PC的長(zhǎng),利用勾股定理即可求出AC的長(zhǎng).
連接OC,如圖所示:
∵直徑AB⊥CD,CD=2,
∴P為CD的中點(diǎn),即CP=DP=,
在Rt△OCP中,OP=1,CP=,
根據(jù)勾股定理得:OC==2,
則OA=OC=2,
則AP=AO+OP=2+1=3,
在Rt△APC中,AP=3,CP=,
根據(jù)勾股定理得:AC==2.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】杭州某零件廠剛接到要鑄造5000件鐵質(zhì)工件的訂單,下面給出了這種工件的三視圖.已知鑄造這批工件的原料是生鐵,待工件鑄成后還要在表面涂一層防銹漆,那么完成這批工件需要原料生鐵多少噸?涂完這批工件要消耗多少千克的防銹漆?(鐵的密度為7.8g/cm3 ,1千克防銹漆可以涂4m2的鐵器面,三視圖單位為cm)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形的對(duì)角線、相交于點(diǎn),,,連接、.
(1)求證四邊形為矩形
(2)若,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校教學(xué)樓AB后方有一斜坡,已知斜坡CD的長(zhǎng)為12米,坡角α為60°,根據(jù)有關(guān)部門的規(guī)定,∠α≤39°時(shí),才能避免滑坡危險(xiǎn),學(xué)校為了消除安全隱患,決定對(duì)斜坡CD進(jìn)行改造,在保持坡腳C不動(dòng)的情況下,學(xué)校至少要把坡頂D向后水平移動(dòng)多少米才能保證教學(xué)樓的安全?(結(jié)果取整數(shù))
(參考數(shù)據(jù):sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某市對(duì)位于筆直公路上的兩個(gè)小區(qū)A、B的供水路線進(jìn)行優(yōu)化改造,測(cè)得供水站M在小區(qū)A的南偏東60°方向,在小區(qū)B的西南方向,小區(qū)B到供水站M的距離為300米,
(1)求供水站M到公路AB的垂直距離MD的長(zhǎng)度.
(2)求小區(qū)A到供水站M的距離.(結(jié)果可保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家商場(chǎng)平時(shí)都以同樣價(jià)格出售相同的商品,“五一”期間兩家商場(chǎng)都讓利酬賓.其中甲商場(chǎng)所有商品直接打折銷售,乙商場(chǎng)在購(gòu)買一定數(shù)額商品后,超過部分打折售.設(shè)商品的原價(jià)為元,購(gòu)買商品后實(shí)付金額為元,與之間的函數(shù)關(guān)系如圖所示:
(1)求的值;
(2)說出甲乙兩家商場(chǎng)的具體銷售方式;
(3)“五一”期間,選擇哪家商場(chǎng)去購(gòu)物更合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境
小明和小麗共同探究一道數(shù)學(xué)題:
如圖①,在△ABC中,點(diǎn)D是邊BC的中點(diǎn),∠BAD=65°,∠DAC=50°,AD=2,
求AC.
探索發(fā)現(xiàn)
小明的思路是:延長(zhǎng)AD至點(diǎn)E,使DE=AD,構(gòu)造全等三角形.
小麗的思路是:過點(diǎn)C作CE∥AB,交AD的延長(zhǎng)線于點(diǎn)E,構(gòu)造全等三角形.
選擇小明、小麗其中一人的方法解決問題情境中的問題.
類比應(yīng)用
如圖②,在四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)O是BD的中點(diǎn),
AB⊥AC.若∠CAD=45°,∠ADC=67.5°,AO=2,則BC的長(zhǎng)為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC 中, ,D、E是斜邊BC上兩點(diǎn),且∠DAE=45°,將△繞點(diǎn)順時(shí)針旋轉(zhuǎn)90后,得到△,連接.列結(jié)論:
①△ADC≌△AFB;②△ ≌△;③△≌△;④
其中正確的是( )
A. ②④ B. ①④ C. ②③ D. ①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,D為弦BC的中心,連接OD并延長(zhǎng)交過點(diǎn)C的切線于點(diǎn)P,連接AC.求證:△CPD∽△ABC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com